![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
如图,△ABC是等腰直角三角形,∠BAC=90°,D是△ABC内一点,且∠DAC=∠DCA=15°,求证BD=BA
4个回答
展开全部
以AD为边,在△ADB中作等边三角形ADE,连接BE∵∠BAE=90°-60°-15°=15°,即∠BAE=∠CAD,且AB=AC,AE=AD,
∴△EAB≌△DAC(SAS),
∴∠BEA=∠CDA=180°-15°-15°=150°,
∴∠BED=360°-∠BEA-60°=150°,即∠BEA=∠BED;
又∵AE=ED,BE=BE,
∴△BEA≌△BED(SAS),
∴BA=BD.
∴△EAB≌△DAC(SAS),
∴∠BEA=∠CDA=180°-15°-15°=150°,
∴∠BED=360°-∠BEA-60°=150°,即∠BEA=∠BED;
又∵AE=ED,BE=BE,
∴△BEA≌△BED(SAS),
∴BA=BD.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询