
设f(x)=sin(2x+π/6)+2msinxcosx,x∈R,若f(x)的最大值为1/2,求m值
f(x)=sin(2x+π/6)+2msinxcosx=(√3sin2x)/2+(cos2x)/2+msin2x=(m+√3/2)sin2x+(cos2x)/2所以f(x...
f(x)=sin(2x+π/6)+2msinxcosx
=(√3sin2x)/2+(cos2x)/2+msin2x
=(m+√3/2)sin2x+(cos2x)/2
所以f(x)的最大值为√[1/4+(m+√3/2)^2=1/2
解得m=-√3/2
所以f(x)的最大值为√[1/4+(m+√3/2)^2=1/2是什么意思 展开
=(√3sin2x)/2+(cos2x)/2+msin2x
=(m+√3/2)sin2x+(cos2x)/2
所以f(x)的最大值为√[1/4+(m+√3/2)^2=1/2
解得m=-√3/2
所以f(x)的最大值为√[1/4+(m+√3/2)^2=1/2是什么意思 展开
1个回答
展开全部
f(x)=(m+√3/2)sin2x+(cos2x)/2
就是F(X)=Asin2x+Bcos2X
F(X)值域【-根号下(A^2+B^2),+根号下(A^2+B^2)】
所以最大值根号下(A^2+B^2)
也就是√[1/4+(m+√3/2)^2=1/2
所以求出m了
就是F(X)=Asin2x+Bcos2X
F(X)值域【-根号下(A^2+B^2),+根号下(A^2+B^2)】
所以最大值根号下(A^2+B^2)
也就是√[1/4+(m+√3/2)^2=1/2
所以求出m了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询