初二四边形几何题目一道——————现在等————————【急】 10
△ABC中,D是BC上一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,联接CF①求证:D是BC的中点②如果AB=AC,试判断四边形ADCF...
△ABC中,D是BC上一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,联接CF
①求证:D是BC的中点
②如果AB=AC,试判断四边形ADCF的形状,并证明你的判断成立
图:http://hi.baidu.com/xdfsd444/album/item/7150a0d56bff104a63279890.html# 展开
①求证:D是BC的中点
②如果AB=AC,试判断四边形ADCF的形状,并证明你的判断成立
图:http://hi.baidu.com/xdfsd444/album/item/7150a0d56bff104a63279890.html# 展开
4个回答
2011-05-01
展开全部
①
证明:
∵AF‖BC
∴∠AFE=∠DBE,∠FAE=∠BDE
∵AE=DE
∴△AEF≌△DEB
∴AF=BD
∵AF-CD,AF‖CD
∴四边形ADCF是平行四边形
∴AF=CD
∴BD=CD
即D是BC的中点
②
四边形ADCF是矩形
证明
连接DF
∵AF‖BD,AF=BD
∴四边形ABDF是平行四边形
∴AB=DF
∵AB=AC
∴AC=DF
∵四边形ADCF是平行四边形
∴四边形ABADCF是矩形
证明:
∵AF‖BC
∴∠AFE=∠DBE,∠FAE=∠BDE
∵AE=DE
∴△AEF≌△DEB
∴AF=BD
∵AF-CD,AF‖CD
∴四边形ADCF是平行四边形
∴AF=CD
∴BD=CD
即D是BC的中点
②
四边形ADCF是矩形
证明
连接DF
∵AF‖BD,AF=BD
∴四边形ABDF是平行四边形
∴AB=DF
∵AB=AC
∴AC=DF
∵四边形ADCF是平行四边形
∴四边形ABADCF是矩形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.证明:E是AD的中点所以 AE=DE 因为 BC平行AF 所以 角F=角FBC
又角AEF=角BED (对顶角相等) 所以 三角形AEF 全等 三角形DEB
所以AF=BD 又 AF=DC 所以 BD=CD 即D是BC的中点
2. 因为 AB=AC,AD为底边直线(三线合一)得 AD垂直BC 又 BC平行AF AF=DC
所以四边形ADCF 为 平行四边形 又 AD垂直BC 所以角ADC=90度
所以平行四边形ADCF 为 矩形
又角AEF=角BED (对顶角相等) 所以 三角形AEF 全等 三角形DEB
所以AF=BD 又 AF=DC 所以 BD=CD 即D是BC的中点
2. 因为 AB=AC,AD为底边直线(三线合一)得 AD垂直BC 又 BC平行AF AF=DC
所以四边形ADCF 为 平行四边形 又 AD垂直BC 所以角ADC=90度
所以平行四边形ADCF 为 矩形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为AF平行于BC
而且AE=ED,
所以BE=EF
四边形ABDF为平行四边形
AF=BD
AF=DC
BD=DC
D是BC中点.
四边形ADCF是矩形;
证明:∵AF=DC,AF‖DC
∴四边形ADCF是平行四边形
∵AB=AC,BD=DC
∴AD⊥BC即∠ADC=90°
∴平行四边形ADCF是矩形.
而且AE=ED,
所以BE=EF
四边形ABDF为平行四边形
AF=BD
AF=DC
BD=DC
D是BC中点.
四边形ADCF是矩形;
证明:∵AF=DC,AF‖DC
∴四边形ADCF是平行四边形
∵AB=AC,BD=DC
∴AD⊥BC即∠ADC=90°
∴平行四边形ADCF是矩形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∠AEF=BED,对等角相等,AE=BD,由AF//BC,∠FAE=BDE,△AEF全等△DEB,则BD=AF,
又有AF=DC,则BD=CD,则证明D是BC中点。
AB=AC则∠ADC=90°,AF=DC,又有AF//DC,即ADCF是矩形
又有AF=DC,则BD=CD,则证明D是BC中点。
AB=AC则∠ADC=90°,AF=DC,又有AF//DC,即ADCF是矩形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询