请大家帮忙讲道物理题(高中物理万有引力与航天那一块的)
一颗卫星在行星表面上运行,如果卫星的周期为T,行星的平均密度为ρ,试证明ρT²是一个恒量。【T²是T的二次方!】需要解题思路和方法,谢谢大家的帮忙,对...
一颗卫星在行星表面上运行,如果卫星的周期为T,行星的平均密度为ρ,试证明ρT²是一个恒量。
【T²是T的二次方!】需要解题思路和方法,谢谢大家的帮忙,对我有帮助的一定给分! 展开
【T²是T的二次方!】需要解题思路和方法,谢谢大家的帮忙,对我有帮助的一定给分! 展开
5个回答
展开全部
这道题我觉得简单的想象也是恒量……ρ本身就是一个恒常量,而卫星环绕星球运转的周期也是一定的。所以ρT²一定是恒常量。
我记得有一个公式是R3/T2=k其中R是椭圆轨道的半长轴,k是一个与行星无关的常量。只要证明了T是常量,那么ρT²也就一定是了。
(因为在百度里打不了上角标,我的3 和2就那么写了,你能看懂不?)
我记得有一个公式是R3/T2=k其中R是椭圆轨道的半长轴,k是一个与行星无关的常量。只要证明了T是常量,那么ρT²也就一定是了。
(因为在百度里打不了上角标,我的3 和2就那么写了,你能看懂不?)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(2π/T)Rm=GMm/R² 万有引力提供向心力
T=2π√(R^3/GM)
M=4R^3π/3 球的体积公式
T^2=4π/GP
T^2P=4π/G 4π/G是一个定值
故ρT²是一个恒量
T=2π√(R^3/GM)
M=4R^3π/3 球的体积公式
T^2=4π/GP
T^2P=4π/G 4π/G是一个定值
故ρT²是一个恒量
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个很简单的
设行星半径为R
则质量正比于ρR^3
表面的万有引力正比于ρR
由向心力公式,角速度平方正比于ρ
周期反比于角速度,ρT^2为常量。
具体把球体积公式,万有引力定律,向心力公式代入即可
设行星半径为R
则质量正比于ρR^3
表面的万有引力正比于ρR
由向心力公式,角速度平方正比于ρ
周期反比于角速度,ρT^2为常量。
具体把球体积公式,万有引力定律,向心力公式代入即可
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
楼上的解错了,让我来解答吧
(2π/T)²·R=GM/R²
∴1/T²=(4π²·R³)/(GM)
∴T²=(GM)/(4π²·R³)
∵ρ=M/v=3M/4π·R³
∴ρT²=3M/(4π·R³)·(4π²·R³)/GM=3π/G
(2π/T)²·R=GM/R²
∴1/T²=(4π²·R³)/(GM)
∴T²=(GM)/(4π²·R³)
∵ρ=M/v=3M/4π·R³
∴ρT²=3M/(4π·R³)·(4π²·R³)/GM=3π/G
参考资料: 自己
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询