在四边形ABCD中,AD平行于BC,∠BAC=∠D,点E,F分别在BC,CD上,且∠AEF=∠ACD,试探究AE与EF之间的关系。。

逸城枫景
2011-05-03 · TA获得超过887个赞
知道小有建树答主
回答量:76
采纳率:0%
帮助的人:0
展开全部

解:(1)AE=EF;

证明:如图:过点E作EH‖AB交AC于点H.

则∠BAC+∠AHE=180°,∠BAC=∠CHE,

∵AB=BC=AC,∴∠BAC=∠ACB=60°,

∴∠CHE=∠ACB=∠B=60°,

∴EH=EC.

∵AD‖BC,∴∠FCE=180°-∠B=120°,

又∠AHE=180°-∠BAC=120°,

∴∠AHE=∠FCE,

∵∠AOE=∠COF,∠AEF=∠ACF,∴∠EAC=∠EFC,

∴△AEH≌△FEC,

∴AE=EF;

(2)猜想:(1)中的结论是没有发生变化.

证明:如图:过点E作EH‖AB交AC于点H,则∠BAC+∠AHE=180°,∠BAC=∠CHE,

∵AB=BC∴∠BAC=∠ACB

∴∠CHE=∠ACB∴EH=EC

∵AD‖BC∴∠D+∠DCB=180°.

∵∠BAC=∠D∴∠AHE=∠DCB=∠ECF

∵∠AOE=∠COF,∠AEF=∠ACF,

∴∠EAC=∠EFC,

∴△AEH≌△FEC,

∴AE=EF;

(3)猜想:(1)中的结论发生变化.

证明:过点E作EH‖AB交AC于点H.

由(2)可得∠EAC=∠EFC,

∠AHE=∠DCB=∠ECF,

∴△AEH∽△FEC,

∴AE:EF=EH:EC,

∵EH‖AB,

∴△ABC∽△HEC,

∴EH:EC=AB:BC=k,

∴AE:EF=k,

∴AE=kEF.

娃娃脸1140317
2012-04-04
知道答主
回答量:3
采纳率:0%
帮助的人:4867
展开全部
∴∠FCE=180°-∠B=120°错了吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式