关于正交性的线性代数
展开全部
证明: 必要性:
因为 v∈W⊥
所以 v 与 W 中任一元素正交,
而 w1,w2,...,wp 是W中元素.
所以 v 与 w1,w2,...,wp 都正交.
即v与S中所有向量都正交.
充分性:
因为v与S中所有向量都正交
所以 (v,wi) = 0, i=1,2,...,p.
而W是由S生成的子空间
所以W中任一向量都是S中向量的线性组合.
设 u = k1w1+k2w2+...+kpwp ∈W
则 (v,u) = k1(v,w1)+k2(v,w2)+...+kp(v,wp) = 0.
即 v 与 W 中任一向量都正交.
所以 v∈W⊥.
因为 v∈W⊥
所以 v 与 W 中任一元素正交,
而 w1,w2,...,wp 是W中元素.
所以 v 与 w1,w2,...,wp 都正交.
即v与S中所有向量都正交.
充分性:
因为v与S中所有向量都正交
所以 (v,wi) = 0, i=1,2,...,p.
而W是由S生成的子空间
所以W中任一向量都是S中向量的线性组合.
设 u = k1w1+k2w2+...+kpwp ∈W
则 (v,u) = k1(v,w1)+k2(v,w2)+...+kp(v,wp) = 0.
即 v 与 W 中任一向量都正交.
所以 v∈W⊥.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询