
求数列之和
1/S1+1/S2+1/S3+```````+1/Sn的值我知道Sn=n^2+2n怎么求啊过程...
1/S1+1/S2+1/S3+```````+1/Sn
的值
我知道 Sn=n^2+2n
怎么求啊
过程 展开
的值
我知道 Sn=n^2+2n
怎么求啊
过程 展开
2个回答
展开全部
sn=n^2+2n=n(n+2)
1/s1+1/s2+.....+1/sn
=1/(1*3)+1/(2*4)+......1/(n-1)*(n+1)+1/(n)*(n+2)
=1/2(1-1/3+1/2-1/4+......1/n-1-1/n+1+1/n-1/n+2)
=1/2(1+1/2-1/n+1-1/n+2)
=3/4-(2n+3)/2(n+2)(n+1)
这是我自己做的。你看看吧
1/s1+1/s2+.....+1/sn
=1/(1*3)+1/(2*4)+......1/(n-1)*(n+1)+1/(n)*(n+2)
=1/2(1-1/3+1/2-1/4+......1/n-1-1/n+1+1/n-1/n+2)
=1/2(1+1/2-1/n+1-1/n+2)
=3/4-(2n+3)/2(n+2)(n+1)
这是我自己做的。你看看吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Sn=n^2+2n
1/Sn=1/(n^2+2n)=1/n(n+2)=1/2*[1/n-1/(n+2)]
1/S1+1/S2+1/S3+```````+1/Sn=1/2×[(1-1/3)+(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+…+1/n-1/(n+2)]
=1/2×[1+1/2-1/(n+1)-1/(n+2)]
=3/4-(2n+3)/[2(n+1)(n+2)]
1/Sn=1/(n^2+2n)=1/n(n+2)=1/2*[1/n-1/(n+2)]
1/S1+1/S2+1/S3+```````+1/Sn=1/2×[(1-1/3)+(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+…+1/n-1/(n+2)]
=1/2×[1+1/2-1/(n+1)-1/(n+2)]
=3/4-(2n+3)/[2(n+1)(n+2)]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询