高二数学排列与组合问题

有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项... 有4位同学在同一天的上、下午参加“身高与体 重”、“立定跳远”、“肺活量”、“握力”、 “台阶”五个项目的测试,每位同学上、下午各测 试一个项目,且不重复. 若上午不测“握 力”项目,下午不测“台阶”项目,其余项目上、下 午都各测试一人. 则不同的安排方式共 有______________种(用数字作答).

不要这个答案
1,假定没有这个限制条件:上午不测“握力”项目,下午不测“台阶”项目。无论是上 午或者下午5个项目都可以选。我们可以很轻松的得出组合的总数:4*5*4*4=320。 2,再考虑这个限制条件:上午不测“握力”项目,下午不测“台阶”项目。在总组合为 320种的组合中,上午为握力的种类有多少种,很好算的,总数的1/10,32种;同 样下午为台阶的组合为多少的,也是总数的1/10,32种。所以320-32-32=256种。 3,但是最后还要考虑那去掉的64种中重复去掉的,好像A同学的一种组合,上午握 力,下午台阶(这种是被去掉了2次),A同学上午台阶,下午握力(也被去掉了2 次),这样的情况还要B.C.D三位,所以要回加2*4-=8 4,所以最后的计算结果是4*5*4*4-32-32+8=264。

这个答案算的数对了,但是大家不觉得第一步的过程就已经有问题吗?
请用另外的办法算
回答好的追加
展开
 我来答
zqs626290
2011-05-05 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.6万
采纳率:66%
帮助的人:5920万
展开全部
【1】按题设要求,上午测试的四个项目是:台,高,立,肺。下午测试的四个项目是:握,高,立,肺,【2】测试分两步进行:上午和下午。①上午安排情况数:这个相当于四个不同的元素全排列,故有4!=24种不同的安排方法。②下午安排情况应分类讨论:若“台阶”同学到“握力”,则其他三人就是三元素的全错位排列,排法=3![1-(1/1!)+(1/2!)-(1/3!)]=3-1=2种,若“台阶”同学不到“握力”,则这四人就是四元素全错位排列,排法=4![1-(1/1!)+(1/2!)-(1/3!)+(1/4!)]=9种,∴下午的排法共有11种。【3】由“乘法原理”可知:不同的安排方法数为24×11=264种。
追问
排法=3![1-(1/1!)+(1/2!)-(1/3!)]=3-1=2种,排法=4![1-(1/1!)+(1/2!)-(1/3!)+(1/4!)]=9种
我用树状图也可以得到这两个数,但具体说明一下这两个式子怎么来的可以吗
追答
这是“全错位排列公式”,你百度一下即可知道的。
fengwu5605
2011-05-04 · TA获得超过165个赞
知道小有建树答主
回答量:228
采纳率:0%
帮助的人:154万
展开全部
1楼的回答上午上午参加台阶的人下午参加握力时 为什么是2种方式 看不懂!!并且264这个答案好像是错的啊!
如果两样都不测共有A(2,3)=6种
必须测握力共有4种 肯定有台阶也是4种 上午台阶下午握力多算了次
所有答案是(6+4+4-1)=13 一共4个人*A(4,4)即是13*24=312
也可以这样算 没限定条件共有A(5,4)=20种
上午测握力有4种 下无测台阶也有4种 上午握力下午台阶多算了次 共有7种不符合条件
符合条件的共20-7=13一共4个人*A(4,4)即是13*24=312
不知道我的答案是不是对的啊 呵呵!!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-05-03
展开全部
当4个人的排列方式不变时,
上午参加台阶的人下午参加握力时,只有2种安排方式
上午参加台阶的人下午参加其他三项时,共有3*3=9种安排方式
4个人有24种排列方式
一共24*(2+9)=24*11=264种参加方式
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
13_112L
2011-05-04
知道答主
回答量:35
采纳率:0%
帮助的人:12.8万
展开全部
256
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式