6个回答
展开全部
当m=0时,求f(x)=(1+1/tanx)sin^2x=(1+cosx/sinx)sin^2x=sin^2x+sinxcosx=(1-cos2x)/2+(sin2x)/2
=(sin2x-cos2x)/2+1/2=[(√2)/2]{[(√2)/2]sin2x-[(√2)/2]cos2x}+1/2=[(√2)/2]sin(2x-π/4)+1/2
当π/8=<x<=3π/4时,0=<2x-π/4<=5π/4,-(√2)/2=<sin(2x-π/4)<=1,0=<[(√2)/2]sin(2x-π/4)+1/2<=(1+√2)/2,
f(x)在区间[π/8,3π/4]上的取值范围为[0,(1+√2)/2]
=(sin2x-cos2x)/2+1/2=[(√2)/2]{[(√2)/2]sin2x-[(√2)/2]cos2x}+1/2=[(√2)/2]sin(2x-π/4)+1/2
当π/8=<x<=3π/4时,0=<2x-π/4<=5π/4,-(√2)/2=<sin(2x-π/4)<=1,0=<[(√2)/2]sin(2x-π/4)+1/2<=(1+√2)/2,
f(x)在区间[π/8,3π/4]上的取值范围为[0,(1+√2)/2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=(sinx)^2 + sinx*cosx = (1-cos2x)/2 + (1/2)sin2x =(1/2)(sin2x - cos2x) + 1/2
=(√2/2)sin(2x - π/4) + 1/2
由已知:π/8≤ x ≤3π/4
则:π/4≤ 2x ≤3π/2
0≤ 2x-π/4 ≤5π/4
sin(2x - π/4)∈[-√2/2,1]
f(x)∈[0,√2/2+1/2]
=(√2/2)sin(2x - π/4) + 1/2
由已知:π/8≤ x ≤3π/4
则:π/4≤ 2x ≤3π/2
0≤ 2x-π/4 ≤5π/4
sin(2x - π/4)∈[-√2/2,1]
f(x)∈[0,√2/2+1/2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=1/2+根号2*sin(2x-π/4)的取值范围是[0,(1+根号2)/2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
[0,(1+√2)/2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询