一个数学平面几何大题(初中)

可能看不清楚,题目是:如图(1),在Rt△ABC中,角BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点E。问题:(1)求证... 可能看不清楚,题目是:如图(1),在Rt△ABC中,角BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点E。
问题:(1)求证:△ABF∽△COE;
(2)如图②,当O是AC边的中点,AC/AB=2的时候,求OF/OE的值。
(3)当O为AC边中点,AC/AB=n的时候,直接写出OF/OE的值。
请注意!图片不太清楚,其中∠BOE在图一和图二中都是90°,∠BAC在图一图二都是90°,∠ADB在图一图二都是90°。左下角的是A点。
展开
 我来答
kongwei077
2011-05-04 · TA获得超过482个赞
知道小有建树答主
回答量:112
采纳率:0%
帮助的人:140万
展开全部
1、
∵ AD⊥BC
∴ ∠ BAD=∠BCA
∵ AD⊥BC,BO⊥OE
∴ ∠ ABF=∠COE
∴ ΔABF∽ΔCOE
2、∵AC:AB=2
∴ ∠ABF=∠COE=∠BOA=45°
O为AC边中点,即OC=AB
在三角形OEC中,作EM⊥OC,交点为M
在三角形ABF中,作FP⊥AB交于AB于P
在三角形AFO中,作FN⊥AO交于AO于N
则ΔBPF ≌ΔOME
∴ OE:OF=BF:OF
∵ ΔBPF∽ΔFNO
∴ BF:OF=PF:NO=PF:FN
∵ ∠PAF=∠ACB
∴ PF:FN=AB:AC=1:2
∴ OF:OE=2
3、OF:OE=(n^3)/4
证明:
在三角形OEC中,作EM⊥OC,令EM=X,AB=a
作FN⊥AO交于AO于F
则CM=nX,EC=√(n^2+1)X
OM=OC-CM=nX/2-nX
BE=BC-CE=√(n^2+1)a-√(n^2+1)X
OB=√(AB^2+OA^2)=√(n^2+4)/2
由OE^2=BE^2-OB^2=OM^2+EM^2解得:
X=an^2/[2(n^2+2)]
∵ ΔABF∽ΔCEO
∴ OE:BF=OC:AB=EC:AF,可推得:BF:OF=AB:FN-1
BF=OE*EC:AF
∴ OE:OF=(AB:FN)*(AF:EC)-AF:EC
∵ AF:FN=BC:AC
∴ OE:OF=(BC:AC)*(AB:EC)-AF:EC=(AB:AC)*(BC:EC)-AF:EC
∵ AF:EC=AB:OC
∴ OE:OF=(AB:AC)*(BC:EC)-AB:OC
=(1:n)*(BC:EC)-2/n
∵ EC:BC=EM:AB=X:a
∴ OE:OF=(1:n)*(a/X)-2/n
将X=an^2/[2(n^2+2)]代入上式可得;OF:OE=n^3/4
当n=2时,OF:OE=8/4=2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式