2个回答
展开全部
这是一个平方和公式,求证方法很多,下面这个是最基本的:
(n+1)^3-n^3=3n^2+3n+1,
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
..............................
3^3-2^3=3*(2^2)+3*2+1
2^3-1^3=3*(1^2)+3*1+1.
把这n个等式两端分别相加,得:
(n+1)^3-1=3(1^2+2^2+3^2+....+n^2)+3(1+2+3+...+n)+n,
由于1+2+3+...+n=(n+1)n/2,
代入上式得:
n^3+3n^2+3n=3(1^2+2^2+3^2+....+n^2)+3(n+1)n/2+n
整理后得:
1^2+2^2+3^2+....+n^2=n(n+1)(2n+1)/6
(n+1)^3-n^3=3n^2+3n+1,
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
..............................
3^3-2^3=3*(2^2)+3*2+1
2^3-1^3=3*(1^2)+3*1+1.
把这n个等式两端分别相加,得:
(n+1)^3-1=3(1^2+2^2+3^2+....+n^2)+3(1+2+3+...+n)+n,
由于1+2+3+...+n=(n+1)n/2,
代入上式得:
n^3+3n^2+3n=3(1^2+2^2+3^2+....+n^2)+3(n+1)n/2+n
整理后得:
1^2+2^2+3^2+....+n^2=n(n+1)(2n+1)/6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
By M.I.
n=1
LS = 0^2 =0
RS =0
n=1 is true
Assum n=k is true
ie 1²+2²+3²+…+(k-1)²=k(k-1)(2k-1)/6
for n=k+1
LS =1²+2²+3²+…+(k-1)²+k²
= k(k-1)(2k-1)/6 +k²
= k{ [(k-1)(2k-1) +6k] /6}
= k{ (2k^2+3k+1)/6}
= k(2k+1)(k+1)/6
= (k+1)(k+1-1)(2(k+1)-1)/6 = RS
By principle of MI, it is true for all n
n=1
LS = 0^2 =0
RS =0
n=1 is true
Assum n=k is true
ie 1²+2²+3²+…+(k-1)²=k(k-1)(2k-1)/6
for n=k+1
LS =1²+2²+3²+…+(k-1)²+k²
= k(k-1)(2k-1)/6 +k²
= k{ [(k-1)(2k-1) +6k] /6}
= k{ (2k^2+3k+1)/6}
= k(2k+1)(k+1)/6
= (k+1)(k+1-1)(2(k+1)-1)/6 = RS
By principle of MI, it is true for all n
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询