
求不定积分∫x^2e^xdx 和∫x arctanxdx
2个回答
展开全部
仔细点看!!!
1.令u=x^2, e^xdx=d(e^x)=dv,原式=x^2e^x-2∫xd(e^x)=x^2e^x-2(xe^x-∫e^xdx)=x^2e^x-2(xe^x-e^x)+C
2.原式=x^2/2arctanx-∫x^2/2 d(arctanx)=x^2/2arctanx-∫x^2/2. (1/(1+x^2))dx=x^2/2arctanx-0.5(x-arctanx)+C
1.令u=x^2, e^xdx=d(e^x)=dv,原式=x^2e^x-2∫xd(e^x)=x^2e^x-2(xe^x-∫e^xdx)=x^2e^x-2(xe^x-e^x)+C
2.原式=x^2/2arctanx-∫x^2/2 d(arctanx)=x^2/2arctanx-∫x^2/2. (1/(1+x^2))dx=x^2/2arctanx-0.5(x-arctanx)+C
展开全部
解答:
(1)∫x^2e^xdx =x^2e^x-∫2xe^xdx=x^2e^x-2xe^x+2∫e^xdx=x^2e^x-2xe^x+e^x+C
(2)∫xarctanxdx=(1/2)x^2arctanx-(1/2)∫[x^2/(1+x^2)]dx
=(1/2)x^2arctanx-(1/2)∫[1-1/(1+x^2)]dx
=(1/2)x^2arctanx-(1/2)x+(1/2)arctanx+C
(1)∫x^2e^xdx =x^2e^x-∫2xe^xdx=x^2e^x-2xe^x+2∫e^xdx=x^2e^x-2xe^x+e^x+C
(2)∫xarctanxdx=(1/2)x^2arctanx-(1/2)∫[x^2/(1+x^2)]dx
=(1/2)x^2arctanx-(1/2)∫[1-1/(1+x^2)]dx
=(1/2)x^2arctanx-(1/2)x+(1/2)arctanx+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询