怎样判断函数是否可微?多元函数可微的条件是什么??

百度网友19d0e82
高粉答主

2019-09-30 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:549
采纳率:98%
帮助的人:16.5万
展开全部

一、函数可微的判断

1、函数可微的必要条件

若函数在某点可微分,则函数在该点必连续;

若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

2、函数可微的充分条件

若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

二、多元函数可微的条件

多元函数可微的充分必要条件是f(x,y)在点(x0,y0)的两个偏导数都存在。

扩展资料:

微分的推导

设函数y = f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy = f(x0 + Δx) − f(x0)可表示为Δy = AΔx + o(Δx),其中A是不依赖于△x的常数, o(Δx)是△x的高阶无穷小,则称函数y = f(x)在点x0是可微的。

 AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。微分dy是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。

得出: 当△x→0时,△y≈dy。 

导数的记号为:(dy)/(dx)=f′(X),我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为dy=f′(X)dX。

参考资料来源:百度百科-可微性

ligongdaxueren
推荐于2017-11-26 · TA获得超过1548个赞
知道小有建树答主
回答量:522
采纳率:44%
帮助的人:236万
展开全部
对于一元函数而言,可微必可导,可导必可微,这是充要条件;对于多远函数而言,可微必偏导数存在,但偏导数存在不能推出可微,而是偏导数连续才能推出可微来,这就不是充要条件了,要证明一个函数可微,必须利用定义,即全增量减去(对x的偏导数乘以x的增量)减去(对y的偏导数乘以Y的增量)之差是距离的高阶无穷小,才能说明可微,如果换不清楚,请追问,我会给你解答,希望对你有所帮助!
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
尹六六老师
2014-03-19 · 知道合伙人教育行家
尹六六老师
知道合伙人教育行家
采纳数:33772 获赞数:147248
百强高中数学竞赛教练, 大学教案评比第一名, 最受学生欢迎教

向TA提问 私信TA
展开全部
可微的充分条件是一阶偏导数连续。
更多追问追答
追答
二十年教学经验,专业值得信赖!
如果你认可我的回答,敬请及时采纳,在右上角点击“评价”,然后就可以选择“满意,问题已经完美解决”了。
追问
就是分别求出对x和对y的偏导数,然后分别都检验是否连续吗???
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
孤菲仁C
高粉答主

2020-11-13 · 说的都是干货,快来关注
知道答主
回答量:5.7万
采纳率:9%
帮助的人:4459万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式