应用拉格朗日中值定理证明不等式:当0<b<=a时,(a-b)/a<=lna/b<=(a-b)/b

匿名用户
推荐于2017-12-16
展开全部
令f(x)=lnx,当b<=§<=a时,1/a<=1/§<=1/b.应用拉格朗日定理,f(a)-f(b)=f'(§)(a-b)所以就有:(a-b)/a<=lna/b<=(a-b)/b.
匿名用户
2013-10-29
展开全部
函数f(x)=lnx b≤x≤a lna-lnb=(a-b)/ζ 其中ζ为某个数, b≤ζ≤a, 有(a-b)/a≤(a-b)/ζ≤(a-b)/b
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式