1个回答
展开全部
解:因为 cosθ=3/5,θ∈(0,π/2)
所以 sinθ=√( 1 -cos²θ) =√(1 - (3/5)²) = 4/5
所以 cos( θ-π/6) = cosθcosπ/6 + sinθsinπ/6
= 3/5 × √3/2 + 4/5 × 1/2
= 3√3/10 + 4/10 = (3√3 + 4)/10
sin(θ-π/3) = sinθcosπ/3 -cosθsinπ/3
= 4/5 × 1/2 - 3/5 ×√3/2
= 4/10 - 3√3/10
=(4 -3√3)/10
所以 sinθ=√( 1 -cos²θ) =√(1 - (3/5)²) = 4/5
所以 cos( θ-π/6) = cosθcosπ/6 + sinθsinπ/6
= 3/5 × √3/2 + 4/5 × 1/2
= 3√3/10 + 4/10 = (3√3 + 4)/10
sin(θ-π/3) = sinθcosπ/3 -cosθsinπ/3
= 4/5 × 1/2 - 3/5 ×√3/2
= 4/10 - 3√3/10
=(4 -3√3)/10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询