
P是矩形ABCD内一点,PA=3,PB=4,PC=5,试求PD是多少?
展开全部
P是矩形ABCD内一点,若PA=3,PB=4,PC=5,则PD=?
解:∵PA^+PC^=PB^+PD^
∴PD^=PA^+PC^-PB^=3^+5^-4^=9+25-16=18
∴PD=3√2
下面是对这个定理的证明:
∵PA^=(m1)^+(n1)^且PC^=(m2)^+(n2)^
∴PA^+PC^=(m1)^+(n1)^+(m2)^+(n2)^
∵PB^=(m2)^+(n1)^且PD^=(m1)^+(n2)^
∴PB^+PD^=(m1)^+(n1)^+(m2)^+(n2)^
∴PA^+PC^=PB^+PD^
解:∵PA^+PC^=PB^+PD^
∴PD^=PA^+PC^-PB^=3^+5^-4^=9+25-16=18
∴PD=3√2
下面是对这个定理的证明:
∵PA^=(m1)^+(n1)^且PC^=(m2)^+(n2)^
∴PA^+PC^=(m1)^+(n1)^+(m2)^+(n2)^
∵PB^=(m2)^+(n1)^且PD^=(m1)^+(n2)^
∴PB^+PD^=(m1)^+(n1)^+(m2)^+(n2)^
∴PA^+PC^=PB^+PD^
追问
您证的太复杂,一道八年级的数学题,刚学完四边形的判定,请您只用矩形的知识解决一下。谢谢!
追答
过点P作EF∥AD交AB于E,交CD于F
过点P作GH∥AB交AD于G,交BC于H
设FC=x
因为PC=5
由勾股定理可得 PF=√(25-x2)
又因为PB=4,BE=FC=x
由勾股定理可得 PE=√(16-x2)
又因为PA=3
由勾股定理可得 AE=√(x2-7)=DF
∵在RT三角形DPF中,两直角边PF=√(25-x2),DF=√(x2-7)
∴斜边PD=√(PF2+DF2)=√(x2-7+25-x2)=√18=3√2

2025-07-02 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询