七年级下数学二元一次方程组 计算题
谁能给我出4道题2道代入法2到加减法(标明那个是代入那个是加减)要难一点把答案也给我按照上述要求去做的给高悬赏要计算题...
谁能给我出4道题 2道代入法 2到加减法(标明那个是代入 那个是加减)
要难一点
把答案也给我
按照上述要求去做的给高悬赏
要计算题 展开
要难一点
把答案也给我
按照上述要求去做的给高悬赏
要计算题 展开
5个回答
展开全部
1、用加减消元法解方程组,由①×2—②得 。
2、在方程=5中,用含的代数式表示为:= ,当=3时,= 。
3、在代数式中,当=-2,=1时,它的值为1,则= ;当=2,=-3时代数式的值是 。
4、已知方程组与有相同的解,则= ,= 。
5、若,则= ,= 。
6、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组。
7、如果=3,=2是方程的解,则= 。
8、若是关于、的方程的一个解,且,则= 。
9、已知,那么的值是 。
二、选择题:
10、在方程组、、、、 、中,是二元一次方程组的有( )
A、2个 B、3个 C、4个 D、5个
11、如果是同类项,则、的值是( )
A、=-3,=2 B、=2,=-3
C、=-2,=3 D、=3,=-2
12、已知是方程组的解,则、间的关系是( )
A、 B、 C、 D、
13、若二元一次方程,,有公共解,则的取值为( )
A、3 B、-3 C、-4 D、4
14、若二元一次方程有正整数解,则的取值应为( )
A、正奇数 B、正偶数 C、正奇数或正偶数 D、0
15、若方程组的解满足>0,则的取值范围是( )
A、<-1 B、<1 C、>-1 D、>1
16、方程是二元一次方程,则的取值为( )
A、≠0 B、≠-1 C、≠1 D、≠2
17、解方程组时,一学生把看错而得,而正确的解是那么、、的值是( )
A、不能确定 B、=4,=5,=-2
C、、不能确定,=-2 D、=4,=7,=2
18、当时,代数式的值为6,那么当时这个式子的值为( )
A、6 B、-4 C、5 D、1
19、设A、B两镇相距千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为千米/小时、千米/小时,①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米。求、、。根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是( )
A、 B、 C、 D、
四、列方程(组)解应用题:
22、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元。其中种茄子每亩用了1700元,获纯利2400元;种西红柿每亩用了1800元,获纯利2600元。问王大伯一共获纯利多少元?
23、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:
甲同学说:“二环路车流量为每小时10000辆”;
乙同学说:“四环路比三环路车流量每小时多2000辆”;
丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”;
请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?
五、综合题:
24、已知关于、的二元一次方程组的解满足二元一次方程,求的值。
25、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?
(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?
参考答案:
一、填空题:
1、;2、,16;3、=-2,-7;4、=,=12;5、=,=;6、,;7、=7;8、-43;9、0
二、选择题:
答案
B
B
D
D
A
C
C
B
B
A
四、列方程解应用题:
22、解:设王大伯种了亩茄子,亩西红柿,根据题意得:
解得:
∴王大伯共获纯利:2400×10+2600×15=6300(元)
答:王大伯共获纯利6300元。
23、解法一:设高峰时段三环路的车流量为每小时辆,则高峰时段四环路的车流量为每小时辆,根据题意得:
解这个方程得=11000
∴=13000
答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆。
解法二:设高峰时段三环路的车流量为每小时辆,四环路的车流量为每小时辆,根据题意得:
解得
答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆。
五、结合题:
24、解:由题意得三元一次方程组:
化简得
①+②-③得:
② ②×2-①×3④得:⑤
由④⑤得:∴
25、解:(1)解法一:设书包的单价为元,则随身听的单价为元
根据题意,得
解这个方程,得
答:该同学看中的随身听单价为360元,书包单价为92元。
解法二:设书包的单价为元,随身听的单价为元
根据题意,得
解这个方程组,得
答:该同学看中的随身听单价为360元,书包单价为92元。
(2)在超市A购买随身听与书包各一件需花费现金:
(元)
因为361.6<400,所以可以选择超市A购买。
在超市B可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共需花费现金:
360+2=362(元)
因为362<400,所以也可以选择在超市B购买。
因为362>361.6,所以在超市A购买更省钱
参考资料:http://www.pep.com.cn/czsx/xszx/tbst/200707/t20070717_403776.htm
2、在方程=5中,用含的代数式表示为:= ,当=3时,= 。
3、在代数式中,当=-2,=1时,它的值为1,则= ;当=2,=-3时代数式的值是 。
4、已知方程组与有相同的解,则= ,= 。
5、若,则= ,= 。
6、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组。
7、如果=3,=2是方程的解,则= 。
8、若是关于、的方程的一个解,且,则= 。
9、已知,那么的值是 。
二、选择题:
10、在方程组、、、、 、中,是二元一次方程组的有( )
A、2个 B、3个 C、4个 D、5个
11、如果是同类项,则、的值是( )
A、=-3,=2 B、=2,=-3
C、=-2,=3 D、=3,=-2
12、已知是方程组的解,则、间的关系是( )
A、 B、 C、 D、
13、若二元一次方程,,有公共解,则的取值为( )
A、3 B、-3 C、-4 D、4
14、若二元一次方程有正整数解,则的取值应为( )
A、正奇数 B、正偶数 C、正奇数或正偶数 D、0
15、若方程组的解满足>0,则的取值范围是( )
A、<-1 B、<1 C、>-1 D、>1
16、方程是二元一次方程,则的取值为( )
A、≠0 B、≠-1 C、≠1 D、≠2
17、解方程组时,一学生把看错而得,而正确的解是那么、、的值是( )
A、不能确定 B、=4,=5,=-2
C、、不能确定,=-2 D、=4,=7,=2
18、当时,代数式的值为6,那么当时这个式子的值为( )
A、6 B、-4 C、5 D、1
19、设A、B两镇相距千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为千米/小时、千米/小时,①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米。求、、。根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是( )
A、 B、 C、 D、
四、列方程(组)解应用题:
22、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元。其中种茄子每亩用了1700元,获纯利2400元;种西红柿每亩用了1800元,获纯利2600元。问王大伯一共获纯利多少元?
23、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:
甲同学说:“二环路车流量为每小时10000辆”;
乙同学说:“四环路比三环路车流量每小时多2000辆”;
丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”;
请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?
五、综合题:
24、已知关于、的二元一次方程组的解满足二元一次方程,求的值。
25、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?
(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?
参考答案:
一、填空题:
1、;2、,16;3、=-2,-7;4、=,=12;5、=,=;6、,;7、=7;8、-43;9、0
二、选择题:
答案
B
B
D
D
A
C
C
B
B
A
四、列方程解应用题:
22、解:设王大伯种了亩茄子,亩西红柿,根据题意得:
解得:
∴王大伯共获纯利:2400×10+2600×15=6300(元)
答:王大伯共获纯利6300元。
23、解法一:设高峰时段三环路的车流量为每小时辆,则高峰时段四环路的车流量为每小时辆,根据题意得:
解这个方程得=11000
∴=13000
答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆。
解法二:设高峰时段三环路的车流量为每小时辆,四环路的车流量为每小时辆,根据题意得:
解得
答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆。
五、结合题:
24、解:由题意得三元一次方程组:
化简得
①+②-③得:
② ②×2-①×3④得:⑤
由④⑤得:∴
25、解:(1)解法一:设书包的单价为元,则随身听的单价为元
根据题意,得
解这个方程,得
答:该同学看中的随身听单价为360元,书包单价为92元。
解法二:设书包的单价为元,随身听的单价为元
根据题意,得
解这个方程组,得
答:该同学看中的随身听单价为360元,书包单价为92元。
(2)在超市A购买随身听与书包各一件需花费现金:
(元)
因为361.6<400,所以可以选择超市A购买。
在超市B可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共需花费现金:
360+2=362(元)
因为362<400,所以也可以选择在超市B购买。
因为362>361.6,所以在超市A购买更省钱
参考资料:http://www.pep.com.cn/czsx/xszx/tbst/200707/t20070717_403776.htm
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
2x+9y=81
3x+y=12【代入法 】答案;x=9 y=7
2x+5y=2
20x+5y=20【加减法】答案;x=1 y=5
79x-76y=-4388
26x-y=832 【代入法 】 答案:x=32 y=91
7x+5y=54
3x+4y=38【加减法】答案;x= 2 y= 8
3x+y=12【代入法 】答案;x=9 y=7
2x+5y=2
20x+5y=20【加减法】答案;x=1 y=5
79x-76y=-4388
26x-y=832 【代入法 】 答案:x=32 y=91
7x+5y=54
3x+4y=38【加减法】答案;x= 2 y= 8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.7x+8y=16 17x+8y=36 x=2 y=¼
2.18x-21y=15 18x-18y=18 x=2 y=1
3.1024x-256y=256 y-3x=0 x=1 y=3
4.2010x-2010y=2010 x=2y x=2 y=1
其实不必要做题,只要细心就可以了。
1、2是加减的。3、4是代入的
2.18x-21y=15 18x-18y=18 x=2 y=1
3.1024x-256y=256 y-3x=0 x=1 y=3
4.2010x-2010y=2010 x=2y x=2 y=1
其实不必要做题,只要细心就可以了。
1、2是加减的。3、4是代入的
追问
我是要给别人出题
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
10x+6/y=5
15+10/y=8
15+10/y=8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
可以参考你们课本的例题,就把其中的数字改了就OK了
追问
我要 难一点的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询