概率论与数理统计

一台机器生产一个零件所需时间t,t在a到b之间(a小于b),t在a,b之间均匀分布。每天工厂下达指标,要求机器生产s个零件,s在c到d之间(c小于d)。s在c,d之间均匀... 一台机器生产一个零件所需时间t,t在a到b之间(a小于b),t在a,b之间均匀分布。
每天工厂下达指标,要求机器生产s个零件,s在c到d之间(c小于d)。s在c,d之间均匀分布。
求每一天该机器生产零件总时间小于f的概率。
展开
 我来答
westlife0413
2019-11-14 · TA获得超过2万个赞
知道小有建树答主
回答量:2万
采纳率:93%
帮助的人:476万
展开全部
微笑不懂泪の殇
推荐于2016-12-01 · TA获得超过208个赞
知道答主
回答量:135
采纳率:0%
帮助的人:62.9万
展开全部
大学上概率论课,我就很纳闷:这1%的概率和99%的概率有区别吗?

打一个比方:有四张彩票供三个人抽取,其中只有一张彩票有奖。第一个人去抽,他的中奖概率是25%,结果没抽到。第二个人看了,心里有些踏实了,他中奖的概率是33%,可结果他也没抽到。第三个人心里此时乐开了花,一来其他的人都失败了,觉得自己很幸运。二来自己中奖的机率高达50%。可结果他同样没中奖。由此看来,概率的大小只是在效果上有所不同,很大的概率给人的安慰感更为强烈。但在实质上却没有区别,每个人中奖的概率都是50%,即中奖与不中奖。

同样的道理,对于个人而言,在生活中要成功做好一件事的概率是没有大小之分的,只有成功或失败之分。但这概率的大小却很能影响人做事的心态。

人们常说:“希望越大,失望越大”,此话并不无道理。希望越大,成功的概率就越大,由此而麻痹了人的心态——以为如此大的概率也是自己能够成功的筹码,这样在思想和行为上就会有所懈怠。自以为十拿九稳的事,到头来却把事情弄砸了。这并不奇怪,因为所谓的“概率大”已逐渐由“希望”转移到“失望”上面了。一说到把这件事做好的概率微乎其微,做事的人难免心灰意冷,因为觉得机会渺茫。因此而丧失了克服困难的意志,觉得事情做不好那是理所当然。

如果说概率有大小之分,那应该不是针对个体而言,而是从一个群体出发,因为不同的人有不同的信念,有不同的做事方法。把地球给撬起来,这在大多数人眼里是绝对不可能的。但在牛人亚里士多德眼里,他觉得成功做这事的概率那是100%——绝对没问题,只要你给他一个支点和足够长的杠杆。就像前面提到的抽奖一样,25%、33%和50%这些概率只不过是外界针对这个群体给出的。25%的机率同样能中奖,50%的机率也会不中奖,对于抽奖者个人而言,没有概率大小之分,只有中与不中之分。别人说做这件事相当容易,切莫掉以轻心,也许你做这件事会相当困难。大家都说做这件事相当困难,切莫心灰意冷,也许你做这件事能如鱼得水。成功与否,不在概率大小,而在于自己能否清楚地认识自己:容易的事自己是否具有做这件事必备的素质,困难的事自己是否有克服这个困难的潜质。

总之,在自己没做一件事之前,不要在外界评价的“容易”和“困难”之间对号入座。要对自己有个清楚的认识,不要膨胀了“自信”,更不要埋没了自己的“潜质”。不要被“绝对有希望”所蒙蔽,也不要被“希望渺茫”所打垮。记住:生活中的概率有且仅有一个数值,那就是50%。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
jssqnju
推荐于2016-01-08 · TA获得超过18万个赞
知道顶级答主
回答量:9.2万
采纳率:86%
帮助的人:2.2亿
展开全部
概率论与数理统计是高等院校理工类、经管类的重要课程之一。在考研数学中的比重大约占22%左右。主要内容包括:概率论的基本概念、随机变量及其概率分布、数字特征、大数定律与中心极限定理、统计量及其概率分布、参数估计和假设检验、回归分析、方差分析、马尔科夫链等内容。
概率论与数理统计是数学的一个有特色且又十分活跃的分支,一方面,它有别开生面的研究课题,有自己独特的概念和方法,内容丰富,结果深刻;另一方面,它与其他学科又有紧密的联系,是近代数学的重要组成部分。由于它近年来突飞猛进的发展与应用的广泛性,目前已发展成为一门独立的一级学科。概率论与数理统计的理论与方法已广泛应用于工业、农业、军事和科学技术中,如预测和滤波应用于空间技术和自动控制,时间序列分析应用于石油勘测和经济管理,马尔科夫过程与点过程统计分析应用于地震预测等,同时他又向基础学科、工科学科渗透,与其他学科相结合发展成为边缘学科,这是概率论与数理统计发展的一个新趋势。

“概率论与数理统计”是理工科大学生的一门必修课程,也是报考硕士研究生时数学试卷中重要内容之一[数学一和数学三都是占22%(概率论)]。由于该学科与生活实践和科学试验有着紧密的联系,是许多新发展的前沿学科(如控制论、信息论、可靠性理论、人工智能等)的基础,因此学好这一学科是十分重要的。
首先我们从历届考研成绩进行分析,观察一下高等数学与概率统计之间有什么差异其一是概率统计的平均得分率往往低于高等数学平均得分率.其二高等数学的得分分布呈两头小中间大现象,即低分和高分比例小,而中间分数段比例大,而概率统计的得分率却是低分多, 中间分数少,高分较多的现象.为什么会发生上述差异?经分析发现虽然高等数学与概率统计同属数学学科,但各有自己的特点. 高等数学主要是通过学习极限、导数和积分等知识解决有关(一维或多维)函数的有关性质和图象的问题, 它与中学的数学有着密切联系而且有着相同的思想方法和解题思路.因而在概念上理解比较容易接受(当然也有比较抽象的内容如中值定理等).另一方面由于涉及许多具体初等函数,在求导数和积分时有许多计算上的技巧,需要大量练习以熟练掌握这些技巧,因而部分学生即使概念不十分清楚,但仍能正确解答相当多的试题,在考研中得到一定的成绩。
而在“概率论与数理统计”的学习中更注重的是概念的理解,而这正是广大学生所疏忽的,在考研复习时几乎有近一半以上学生对“什么是随机变量”、“为什么要引进随机变量”仍说不清楚.对于涉及随机变量的独立,不相关等概念更是无从着手,这一方面是因为高等数学处理的是“确定”的事件.如函数y=f(x),当x确定后y有确定的值与之对应.而概率论中随机变量X在抽样前是不确定的,我们只能由随机试验确定它落在某一区域中的概率,要建立用“不确定性”的思维方法往往比较困难,如果套用确定性的思维方法就会出错.由于基本概念没有搞懂,即使是十分简单的题目也难以得分.从而造成低分多的现象.另一方面由于概率论中涉及的计算技巧不多,除了古典概型,几何概型和计算二维随机变量的函数分布时如何确定积分上、下限有一些计算的难点,其他的只是数值或者积分、导数的计算.因而如果概念清楚,那么解题往往很顺利且易得到正确答案,这正是高分较多的原因。
根据上面分析,启示我们不能把高等数学的学习方法照搬到“概率统计”的学习上来,而应按照概率统计自身的特点提出学习方法,才能取得“事半功倍”的效果.下面我们分别对“概率论”和“数理统计”的学习方法提出一些建议。
一、 学习“概率论”要注意以下几个要点
1. 在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。这实际上是一个抽象过程。正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,然后抽象为1+2=3.对于具体的随机试验中的具体随机事件,可以计算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不同样本空间予以统一,并对整个随机试验进行刻画。随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画. 此外若对一切实数集合B,知道P(X∈B). 那么随机试验的任一随机事件的概率也就完全确定了.所以我们只须求出随机变量X的分布P(X∈B). 就对随机试验进行了全面的刻画.它的研究成了概率论的研究中心课题.故而随机变量的引入是概率论发展历史中的一个重要里程碑.类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会。
2. 在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间.而它的取值是不确定的,
随着试验结果的不同可取不同值,但是它取某一区间的概率又能根据随机试验予以确定的,而我们关心的通常只是它的取值范围,即对于实轴上任一B,计算概率P(X∈B),即随机变量X的分布.只有理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解.又如随机事件的互不相容和相互独立两个概念通常会混淆,前者是事件的运算性质,后者是事件的概率性质,但它们又有一定联系,如果P(A)·P(B)>0,则A,B独立则一定相容.类似地,如随机变量的独立和不相关等概念的联系与差异一定要真正搞懂。
3. 搞懂了概率论中的各个概念,一般具体的计算都是不难的,如F(x)=P(X≤x),EX,DX等按定义都易求得.计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞ f(x,y)dy,事件B的概率P((X,Y)∈B)=∫∫Bf(x,y)dxdy,卷积公式等的计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正的积分限并不再是(-∞,∞)或B,这时如何正确确定事实上的积分限就成了正确解题的关键,要切实掌握。
4. 概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧基本上在高等数学中都已学过.因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去.这样往往能“事半功倍”。
二、 学习“数理统计”要注意以下几个要点
1. 由于数理统计是一门实用性极强的学科,在学习中要紧扣它的实际背景,理解统计方法的直观含义.了解数理统计能解决那些实际问题.对如何处理抽样数据,并根据处理的结果作出合理的统计推断,该结论的可靠性有多少要有一个总体的思维框架,这样,学起来就不会枯燥而且容易记忆.例如估计未知分布的数学期望,就要考虑到① 如何寻求合适的估计量的途径,②如何比较多个估计量的优劣?这样,针对①按不同的统计思想可推出矩估计和极大似然估计,而针对②又可分为无偏估计、有效估计、相合估计,因为不同的估计名称有着不同的含义,一个具体估计量可以满足上面的每一个,也可能不满足.掌握了寻求估计的统计思想,具体寻求估计的步骤往往是“套路子”的,并不困难,然而如果没有从根本上理解,仅死背套路子往往会出现各种错误。
2. 许多同学在学习数理统计过程中往往抱怨公式太多,置信区间,假设检验表格多而且记不住.事实上概括起来只有八个公式需要记忆,而且它们之间有着紧密联系,并不难记,而区间估计和假设检验中只是这八个公式的不同运用而已,关键在于理解区间估计和假设检验的统计意义,在理解基础上灵活运用这八个公式,完全没有必要死记硬背。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式