分数的意义是什么
意义:
一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。
要了解小数的意义,可从分数的意义着手,分数的意义可从分割及合成活动来解释,当一个整体(指基准量)被等分后,在集聚其中一部分的量称为“分量”,而“分数”就是用来表示或纪录这个“分量”。例如: 1/5是指一个整数分成五等分后,形成二分的“分量”。当整体被分成十等分、百等分、千等分……等时,此时的分量,就使用另外一种纪录的方法-小数。
扩展资料
分数(来自拉丁语,“破碎”)代表整体的一部分,或更一般地,任何数量相等的部分。
分数是一个整数a和一个正整数b的不等于整数的比。
当在日常英语中说话时,分数描述了一定大小的部分,例如半数,八分之五,四分之三。 分子和分母也用于不常见的分数,包括复合分数,复数分数和混合数字。
分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。
参考资料:百度百科——分数
分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。
一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。
当在日常英语中说话时,分数描述了一定大小的部分,例如半数,八分之五,四分之三。 分子和分母也用于不常见的分数,包括复合分数,复数分数和混合数字。
扩展资料:
一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。
注意:小学阶段与小学阶段以后的分数定义有所不同,小学阶段 , 等都姑且视为分数。但实际上,只有不等于整数的有理数才是分数,所以 , 等都不是分数。
把单位“1”平均分成若干份,表示这样的一份或几份的数叫做真分数如: 或 ,也可能成为假分数,也就是分子大于或者等于分母,例如 。分母表示把一个物体平均分成几份,分子表示取了其中的几份。
分子在上,分母在下,也可以把它当做除法来看,用分子除以分母(因0在除法不能做除数,所以分母不能为0),相反除法也可以改为用分数表示。
参考资料:百度百科---分数
分数的意义:把单位1平均分成若干份,表示这样一份或几份的数,叫做分数。
分数是指分子小于分母的分数,最简分数是指分子和分母互质的分数。
举个例子:9/12就是一个真分数,但它不是最简分数,因为分子和分母都有公约数3,也就是说能同时除以3,约分得3/4,分子3和分母4除了1以外再没有其他公约数,那么3/4就是一个最简分数。
分子比分母小的分数叫做真分数。真分数小于1。
分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于1或者等于1。
整数和真分数合成的数通常叫做带分数,形式为:整数+真分数
真分数是指分子小于分母,并且分子和分母是既约整数(分子和分母无除1外的公约数,或者说两者互质)
扩展资料:
注意:小学阶段与小学阶段以后的分数定义有所不同,小学阶段 , 等都姑且视为分数。但实际上,只有不等于整数的有理数才是分数,所以 , 等都不是分数。
把单位“1”平均分成若干份,表示这样的一份或几份的数叫做真分数如: 或 ,也可能成为假分数,也就是分子大于或者等于分母,例如 。分母表示把一个物体平均分成几份,分子表示取了其中的几份。
分子在上,分母在下,也可以把它当做除法来看,用分子除以分母(因0在除法不能做除数,所以分母不能为0),相反除法也可以改为用分数表示。
注意事项
①分母一定不能为0,因为分母相当于除数。否则等式无法成立,分子可以等于0,因为分子相当于被除数。相当于0除以任何一个数,不论分母是多少,答案都是0。
②分数中的分子或分母经过约分后不能出现无理数(如2的平方根),否则就不是分数。
③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。
(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)
参考资料:百度百科——分数
一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。
要了解小数的意义,可从分数的意义着手,分数的意义可从分割及合成活动来解释,当一个整体(指基准量)被等分后,在集聚其中一部分的量称为“分量”,而“分数”就是用来表示或纪录这个“分量”。例如: 1/5是指一个整数分成五等分后,形成二分的“分量”。当整体被分成十等分、百等分、千等分……等时,此时的分量,就使用另外一种纪录的方法-小数。例如
记成0.1、
记成0.02、
记成0.005……等。其中的“ . ”称之为小数点,用以分隔整数部分与无法构成整数的小数部分。整数非0者称为带小数,若为0则称纯小数。由此可知,小数的意义是分数意义的一环。
分子与分母同时乘或除以一个相同的数(0除外),分数的大小不变,这就是分数的基本性质。
在一个分数中,所描述的相等部分的数量是分子,部分的类型或种类是分母。在非正式的文本中,分子和分母可能仅通过其放置来进行区分,但是在正式文本中它们总是由分数线分开。分数线可以是水平的(如),倾斜的(如)或对角线形式的(如)。这些标记分别称为水平线,斜线(US)或对角线(UK),除法斜线和分数斜线。在排版中,分数线呈水平形式的分数也称为“en 分数”或“nut分数”,对角线形式的分数称为“em 分数”,这它们占据的线的宽度。
英语分数的分母通常表示为序数,如果分子不是1,则读分母的复数。(例如,和,分母都读作”fifths”。)此外,分母为2时,总被读作“half”或者“halves”,分母为4时,总被读作“quater/quaters”或者”fourth/fourths”。分母为100, 总被读“hunderedth/hunderdths”或者“percent”。如果分数的分母为1,则经常省略不读,只需读出分子(例如读作3)。分母为1,可以省略不写。
在英文中,分数的两个数字之间含有连字符,则表示一个整体,否则,它表示几个分子为1的分数(例如:”two-fifths”表示, 而”two fifths”表示2个)。值得注意的是,分数若当做形容词,此时,必须使用连字符。此外,分数可以读作分子“over”分母,并将分母表示为基数(例如,英文中,3/1也可以读作为”three over one”). “over”也可以在分数线为对角线形式的分子中使用(例如,英文中,可以读作"one-half", "one half", 或者 “one over two”)。具有非十次幂的大分母的分数通常以下列方式呈现(例如,1/117为“one over one hundred seventeen”),而那些具有可被十整除的分母的分数通常以正常的序数方式读取(例如,6/1000000读作”six-millionths", “six millionths”, “six one-millionths”)。