如何用定义证明一个函数是无穷大,求例题
当x趋于0时,1+2x≈1,所以y=1/x
|y|=|1/x|>10^4,所以 |x|X>-10^-4
限 |x-1/2|<1/4,有 |x-1| > 1/2-|x-1/2| > 1/2-1/4 = 1/4。任意给定ε>0,要使
|x/(x-1)-(-1)| = 2|(x-1/2)/(x-1)|
= 2|x-1/2|/|x-1| < 2|x-1/2|/(1/4)
= 8|x-1/2| < ε,只须 |x-2| < min{ε/8,1/4}。
取 δ(ε) = min{ε/8,1/4} > 0,则当 0< |x-1/2| < δ(ε) 时,就有|x/(x-1)-(-1) <= 8|x-1/2| < …< ε ,根据极限的定义,得证。
数学定义
设函数f(x)在x0的某一去心邻域内有定义(或|x|大于某一正数时有定义)。如果对于任意给定的正数M(无论它多么大),总存在正数δ(或正数X),只要x适合不等式0<|x-x0|<δ(或|x|>X,即x趋于无穷),对应的函数值f(x)总满足不等式|f(x)|>M,则称函数f(x)为当x→x0(或x→∞)时的无穷大。
在自变量的同一变化过程中,无穷大与无穷小具有倒数关系,即当x→a时f(x)为无穷大,则1/f(x)为无穷小;反之,f(x)为无穷小,且f(x)在a的某一去心邻域内恒不为0时,1/f(x)才为无穷大。
广告 您可能关注的内容 |