3个回答
展开全部
首先这几个网址包含了最全的平面几何的知识:
几何定理:http://baike.baidu.com/view/587949.htm?func=retitle
几何:http://baike.baidu.com/taglist?tag=%BC%B8%BA%CE&tagfromview
下面是二试平面几何部分的考纲。建议你在“几何”那个网址中搜索一下相关定理着重学习。
平面几何
基本要求:掌握初中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点--重心。三角形内到三边距离之积最大的点--重心。
几何不等式。
简单的等周问题。了解下述定理:
在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
几何中的运动:反射、平移、旋转。
复数方法、向量方法。
平面凸集、凸包及应用。
至于书,我建议你购买浙江大学出版社的高中数学竞赛专题讲座的平面几何那本,红色皮子主编马洪炎和虞金龙。这里面提到的所有你不知道的定理可在上述网址查到。这是卓越网的这本书的购买地址:http://www.amazon.cn/%E9%AB%98%E4%B8%AD%E6%95%B0%E5%AD%A6%E7%AB%9E%E8%B5%9B%E4%B8%93%E9%A2%98%E8%AE%B2%E5%BA%A7-%E5%B9%B3%E9%9D%A2%E5%87%A0%E4%BD%95-%E9%A9%AC%E6%B4%AA%E7%82%8E/dp/B0011F9JTG
事实上初中未涉及到的最多就是弦切角定理、切割线定理、射影定理,把这本书认真研究完再做奥赛难度的试题,多做多分析,实际上二试的平面几何就变得很简单了。做题的书满世界都是,自己随便找吧。
请采纳。
几何定理:http://baike.baidu.com/view/587949.htm?func=retitle
几何:http://baike.baidu.com/taglist?tag=%BC%B8%BA%CE&tagfromview
下面是二试平面几何部分的考纲。建议你在“几何”那个网址中搜索一下相关定理着重学习。
平面几何
基本要求:掌握初中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点--重心。三角形内到三边距离之积最大的点--重心。
几何不等式。
简单的等周问题。了解下述定理:
在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
几何中的运动:反射、平移、旋转。
复数方法、向量方法。
平面凸集、凸包及应用。
至于书,我建议你购买浙江大学出版社的高中数学竞赛专题讲座的平面几何那本,红色皮子主编马洪炎和虞金龙。这里面提到的所有你不知道的定理可在上述网址查到。这是卓越网的这本书的购买地址:http://www.amazon.cn/%E9%AB%98%E4%B8%AD%E6%95%B0%E5%AD%A6%E7%AB%9E%E8%B5%9B%E4%B8%93%E9%A2%98%E8%AE%B2%E5%BA%A7-%E5%B9%B3%E9%9D%A2%E5%87%A0%E4%BD%95-%E9%A9%AC%E6%B4%AA%E7%82%8E/dp/B0011F9JTG
事实上初中未涉及到的最多就是弦切角定理、切割线定理、射影定理,把这本书认真研究完再做奥赛难度的试题,多做多分析,实际上二试的平面几何就变得很简单了。做题的书满世界都是,自己随便找吧。
请采纳。
展开全部
平面几何基础知识(基本定理、基本性质)
1.
勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.
2. 射影定理(欧几里得定理)
3. 中线定理(巴布斯定理)设△ABC的边BC的中点为P,则有 ;中线长: .
4. 垂线定理: .高线长: .
5.
角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC中,AD平分∠BAC,则 ;(外角平分线定理).角平分线长: (其中
为周长一半).
6. 正弦定理: ,(其中 为三角形外接圆半径).
7. 余弦定理: .
8. 张角定理: .
9.
斯特瓦尔特(Stewart)定理:设已知△ABC及其底边上B、C两点间的一点D,则有AB2•DC+AC2•BD-AD2•BC=BC•DC•BD.
10.
圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角.
12.
圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:) 13. 布拉美古塔(Brahmagupta)定理:
在圆内接四边形ABCD中,AC⊥BD,自对角线的交点P向一边作垂线,其延长线必平分对边.
14.
点到圆的幂:设P为⊙O所在平面上任意一点,PO=d,⊙O的半径为r,则d2-r2就是点P对于⊙O的幂.过P任作一直线与⊙O交于点A、B,则PA•PB=
|d2-r2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.
15. 托勒密(Ptolemy)定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC•BD=AB•CD+AD•BC,(逆命题成立)
.(广义托勒密定理)AB•CD+AD•BC≥AC•BD.
1.
勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.
2. 射影定理(欧几里得定理)
3. 中线定理(巴布斯定理)设△ABC的边BC的中点为P,则有 ;中线长: .
4. 垂线定理: .高线长: .
5.
角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC中,AD平分∠BAC,则 ;(外角平分线定理).角平分线长: (其中
为周长一半).
6. 正弦定理: ,(其中 为三角形外接圆半径).
7. 余弦定理: .
8. 张角定理: .
9.
斯特瓦尔特(Stewart)定理:设已知△ABC及其底边上B、C两点间的一点D,则有AB2•DC+AC2•BD-AD2•BC=BC•DC•BD.
10.
圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角.
12.
圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:) 13. 布拉美古塔(Brahmagupta)定理:
在圆内接四边形ABCD中,AC⊥BD,自对角线的交点P向一边作垂线,其延长线必平分对边.
14.
点到圆的幂:设P为⊙O所在平面上任意一点,PO=d,⊙O的半径为r,则d2-r2就是点P对于⊙O的幂.过P任作一直线与⊙O交于点A、B,则PA•PB=
|d2-r2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.
15. 托勒密(Ptolemy)定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC•BD=AB•CD+AD•BC,(逆命题成立)
.(广义托勒密定理)AB•CD+AD•BC≥AC•BD.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你好,这里面有一册几何专题,里是以前国家队领队写的书,是权威参考书来的.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询