基于遗传算法求解作业车间调度的MATLAB程序问题
您好~~我在网上找的程序,由于太长,只能发一半上来。调试了半天~但是总不能成功运行,跪求高手指点~~或者以MT6的经典问题,帮我编写下程序好么?~85851040@qq....
您好~~我在网上找的程序,由于太长,只能发一半上来。调试了半天~但是总不能成功运行,跪求高手指点~~或者以MT6的经典问题,帮我编写下程序好么?~85851040@qq.com~~~十分感谢了~
function [Zp,Y1p,Y2p,Y3p,Xp,LC1,LC2]=JSPGA(M,N,Pm,T,P)
%--------------------------------------------------------------------------
% JSPGA.m
% 车间作业调度问题遗传算法
%--------------------------------------------------------------------------
% 输入参数列表
% M 遗传进化迭代次数
% N 种群规模(取偶数)
% Pm 变异概率
% T m×n的矩阵,存储m个工件n个工序的加工时间
% P 1×n的向量,n个工序中,每一个工序所具有的机床数目
% 输出参数列表
% Zp 最优的Makespan值
% Y1p 最优方案中,各工件各工序的开始时刻,可根据它绘出甘特图
% Y2p 最优方案中,各工件各工序的结束时刻,可根据它绘出甘特图
% Y3p 最优方案中,各工件各工序使用的机器编号
% Xp 最优决策变量的值,决策变量是一个实数编码的m×n矩阵
% LC1 收敛曲线1,各代最优个体适应值的记录
% LC2 收敛曲线2,各代群体平均适应值的记录
% 最后,程序还将绘出三副图片:两条收敛曲线图和甘特图(各工件的调度时序图)
%第一步:变量初始化
[m,n]=size(T);%m是总工件数,n是总工序数
Xp=zeros(m,n);%最优决策变量
LC1=zeros(1,M);%收敛曲线1
LC2=zeros(1,N);%收敛曲线2
%第二步:随机产生初始种群
farm=cell(1,N);%采用细胞结构存储种群
for k=1:N
X=zeros(m,n);
for j=1:n
for i=1:m
X(i,j)=1+(P(j)-eps)*rand;
end
end
farm{k}=X;
end
counter=0;%设置迭代计数器
while counter
%第三步:交叉
newfarm=cell(1,N);%交叉产生的新种群存在其中
Ser=randperm(N);
for i=1:2:(N-1)
A=farm{Ser(i)};%父代个体
B=farm{Ser(i+1)};
Manner=unidrnd(2);%随机选择交叉方式
if Manner==1
cp=unidrnd(m-1);%随机选择交叉点
%双亲双子单点交叉
a=[A(1:cp,:);B((cp+1):m,:)];%子代个体
b=[B(1:cp,:);A((cp+1):m,:)];
else
cp=unidrnd(n-1);%随机选择交叉点
a=[A(:,1:cp),B(:,(cp+1):n)];%双亲双子单点交叉
b=[B(:,1:cp),A(:,(cp+1):n)];
end
newfarm{i}=a;%交叉后的子代存入newfarm
newfarm{i+1}=b;
end
%新旧种群合并
FARM=[farm,newfarm];
%第四步:选择复制
FITNESS=zeros(1,2*N);
fitness=zeros(1,N);
plotif=0;
for i=1:(2*N)
X=FARM{i};
Z=COST(X,T,P,plotif);%调用计算费用的子函数
FITNESS(i)=Z;
end
%选择复制采取两两随机配对竞争的方式,具有保留最优个体的能力
Ser=randperm(2*N);
for i=1:N
f1=FITNESS(Ser(2*i-1));
f2=FITNESS(Ser(2*i));
if f1<=f2
farm{i}=FARM{Ser(2*i-1)};
fitness(i)=FITNESS(Ser(2*i-1));
else
farm{i}=FARM{Ser(2*i)};
fitness(i)=FITNESS(Ser(2*i));
end
end
%记录最佳个体和收敛曲线
minfitness=min(fitness)
meanfitness=mean(fitness)
LC1(counter+1)=minfitness;%收敛曲线1,各代最优个体适应值的记录
LC2(counter+1)=meanfitness;%收敛曲线2,各代群体平均适应值的记录
pos=find(fitness==minfitness);
Xp=farm{pos(1)};
%第五步:变异
for i=1:N
if Pm>rand;%变异概率为Pm
X=farm{i};
I=unidrnd(m);
J=unidrnd(n);
X(I,J)=1+(P(J)-eps)*rand;
farm{i}=X;
end
end
farm{pos(1)}=Xp;
counter=counter+1
end
%输出结果并绘图
figure(1);
plotif=1;
X=Xp;
[Zp,Y1p,Y2p,Y3p]=COST(X,T,P,plotif);
figure(2);
plot(LC1);
figure(3);
plot(LC2); 展开
function [Zp,Y1p,Y2p,Y3p,Xp,LC1,LC2]=JSPGA(M,N,Pm,T,P)
%--------------------------------------------------------------------------
% JSPGA.m
% 车间作业调度问题遗传算法
%--------------------------------------------------------------------------
% 输入参数列表
% M 遗传进化迭代次数
% N 种群规模(取偶数)
% Pm 变异概率
% T m×n的矩阵,存储m个工件n个工序的加工时间
% P 1×n的向量,n个工序中,每一个工序所具有的机床数目
% 输出参数列表
% Zp 最优的Makespan值
% Y1p 最优方案中,各工件各工序的开始时刻,可根据它绘出甘特图
% Y2p 最优方案中,各工件各工序的结束时刻,可根据它绘出甘特图
% Y3p 最优方案中,各工件各工序使用的机器编号
% Xp 最优决策变量的值,决策变量是一个实数编码的m×n矩阵
% LC1 收敛曲线1,各代最优个体适应值的记录
% LC2 收敛曲线2,各代群体平均适应值的记录
% 最后,程序还将绘出三副图片:两条收敛曲线图和甘特图(各工件的调度时序图)
%第一步:变量初始化
[m,n]=size(T);%m是总工件数,n是总工序数
Xp=zeros(m,n);%最优决策变量
LC1=zeros(1,M);%收敛曲线1
LC2=zeros(1,N);%收敛曲线2
%第二步:随机产生初始种群
farm=cell(1,N);%采用细胞结构存储种群
for k=1:N
X=zeros(m,n);
for j=1:n
for i=1:m
X(i,j)=1+(P(j)-eps)*rand;
end
end
farm{k}=X;
end
counter=0;%设置迭代计数器
while counter
%第三步:交叉
newfarm=cell(1,N);%交叉产生的新种群存在其中
Ser=randperm(N);
for i=1:2:(N-1)
A=farm{Ser(i)};%父代个体
B=farm{Ser(i+1)};
Manner=unidrnd(2);%随机选择交叉方式
if Manner==1
cp=unidrnd(m-1);%随机选择交叉点
%双亲双子单点交叉
a=[A(1:cp,:);B((cp+1):m,:)];%子代个体
b=[B(1:cp,:);A((cp+1):m,:)];
else
cp=unidrnd(n-1);%随机选择交叉点
a=[A(:,1:cp),B(:,(cp+1):n)];%双亲双子单点交叉
b=[B(:,1:cp),A(:,(cp+1):n)];
end
newfarm{i}=a;%交叉后的子代存入newfarm
newfarm{i+1}=b;
end
%新旧种群合并
FARM=[farm,newfarm];
%第四步:选择复制
FITNESS=zeros(1,2*N);
fitness=zeros(1,N);
plotif=0;
for i=1:(2*N)
X=FARM{i};
Z=COST(X,T,P,plotif);%调用计算费用的子函数
FITNESS(i)=Z;
end
%选择复制采取两两随机配对竞争的方式,具有保留最优个体的能力
Ser=randperm(2*N);
for i=1:N
f1=FITNESS(Ser(2*i-1));
f2=FITNESS(Ser(2*i));
if f1<=f2
farm{i}=FARM{Ser(2*i-1)};
fitness(i)=FITNESS(Ser(2*i-1));
else
farm{i}=FARM{Ser(2*i)};
fitness(i)=FITNESS(Ser(2*i));
end
end
%记录最佳个体和收敛曲线
minfitness=min(fitness)
meanfitness=mean(fitness)
LC1(counter+1)=minfitness;%收敛曲线1,各代最优个体适应值的记录
LC2(counter+1)=meanfitness;%收敛曲线2,各代群体平均适应值的记录
pos=find(fitness==minfitness);
Xp=farm{pos(1)};
%第五步:变异
for i=1:N
if Pm>rand;%变异概率为Pm
X=farm{i};
I=unidrnd(m);
J=unidrnd(n);
X(I,J)=1+(P(J)-eps)*rand;
farm{i}=X;
end
end
farm{pos(1)}=Xp;
counter=counter+1
end
%输出结果并绘图
figure(1);
plotif=1;
X=Xp;
[Zp,Y1p,Y2p,Y3p]=COST(X,T,P,plotif);
figure(2);
plot(LC1);
figure(3);
plot(LC2); 展开
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询