在四边形ABCD中,∠ABC=∠ADC=90°,点M、N分别是AC、BD的中点。求证:MN⊥BD。

图... 展开
覆水难收不给力
2011-05-07 · TA获得超过1万个赞
知道小有建树答主
回答量:379
采纳率:0%
帮助的人:471万
展开全部
解:MN⊥BD成立.
理由:∵∠ABC=∠ADC=90°,M是AC的中点,
∴DM=BM.
又∵N是BD的中点,
∴MN⊥BD.
更多追问追答
追问
为什么DM=BM?
追答
你自己看下
泪落物痕
2011-05-07 · TA获得超过590个赞
知道答主
回答量:48
采纳率:0%
帮助的人:46.1万
展开全部
在四边形ABCD中,∠ABC=∠ADC=90°就可以
以AC中点M为原点,AC为直径作一个圆
因为N是BD中点,根据垂径定理的推论①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
即可得出 MN⊥BD
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
珺520mj
2011-05-08 · TA获得超过128个赞
知道答主
回答量:37
采纳率:0%
帮助的人:22.2万
展开全部
直角三角形斜边中线等于斜边一半
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式