已知函数f(x)=(x^2+ax+a)e^x(a∈R)
(1)求f(x)的单调区间与极值(2)设g(x)=f(x)-t(t∈R,a>2),若函数g(x)在[-3,+∞]有三个零点,求实数t的取值范围...
(1)求f(x)的单调区间与极值
(2)设g(x)=f(x)-t(t∈R,a>2),若函数g(x)在[-3,+∞]有三个零点,求实数t的取值范围 展开
(2)设g(x)=f(x)-t(t∈R,a>2),若函数g(x)在[-3,+∞]有三个零点,求实数t的取值范围 展开
1个回答
展开全部
先求导,得e^x(x^2+ax+a+2x+a),令其=0,因为e^x>0,所以解方程x^2+ax+a+2x+a=0得x1=-a,x2=-2
当a<2,单调减区间(-2,-a),增区间为(-a,+∞)和(-∞,-2),
当a>2,单调减区间(-a,-2),增区间为(-2,+∞)和(-∞,-a),
代入求出f(-2),f(-a)既极值
(2)单调性为当a>2,单调减区间(-a,-2),增区间为(-2,+∞)和(-∞,-a),
画出大致图像,可知,f(-a)>0,f(-2)<0,f(-3)<=0解不等式即可
当a<2,单调减区间(-2,-a),增区间为(-a,+∞)和(-∞,-2),
当a>2,单调减区间(-a,-2),增区间为(-2,+∞)和(-∞,-a),
代入求出f(-2),f(-a)既极值
(2)单调性为当a>2,单调减区间(-a,-2),增区间为(-2,+∞)和(-∞,-a),
画出大致图像,可知,f(-a)>0,f(-2)<0,f(-3)<=0解不等式即可
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询