求证当x>=1时,arctanx-1/2arccos2x/1+x^2=π/4
1个回答
展开全部
原题是:求证 当x>=1时,arctanx-(1/2)arccos(2x/(1+x^2))=π/4
证明:因x≥1,设x=tanθ, θ∈[π/4,π/2)
则2x/(1+x^2))=2tanθ/(1+(tanθ)^2))
=sin2θ=cos(2θ-π/2)
其中2θ-π/2∈[0,π/2)
arctanx-(1/2)arccos(2x/(1+x^2))
=arctan(tanθ)-(1/2)arccos(cos(2θ-π/2))
=θ-(1/2)(2θ-π/2) (注意:此步用到 θ∈[π/4,π/2), 2θ-π/2∈[0,π/2) 两关键条件)
=θ-θ+π/4
=π/4
所以当x>=1时,arctanx-(1/2)arccos(2x/(1+x^2))=π/4。
希望对你有点帮助!
证明:因x≥1,设x=tanθ, θ∈[π/4,π/2)
则2x/(1+x^2))=2tanθ/(1+(tanθ)^2))
=sin2θ=cos(2θ-π/2)
其中2θ-π/2∈[0,π/2)
arctanx-(1/2)arccos(2x/(1+x^2))
=arctan(tanθ)-(1/2)arccos(cos(2θ-π/2))
=θ-(1/2)(2θ-π/2) (注意:此步用到 θ∈[π/4,π/2), 2θ-π/2∈[0,π/2) 两关键条件)
=θ-θ+π/4
=π/4
所以当x>=1时,arctanx-(1/2)arccos(2x/(1+x^2))=π/4。
希望对你有点帮助!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询