(1)由题意可知:OA=2,∠AOB=30°,则根据直角三角形中30°所对的边是斜边的一半,则AB=1,根据勾股定理可以求得OB= ;则点A的坐标为(1, ),点B的坐标为(0, );
(2)垂直. 理由:连接DE,直角三角形ODE中,tan∠OED= = , ∴∠OED=60°. ∵∠BOA=30°, ∴OA⊥ED.
(3)因为DE总是垂直于OA运动,因此可以看做直线DE沿OA方向进行运动.因此两者有公共点的取值范围就是O?A之间. 当DE过O点时,t=0. 当DE过A点时,直角三角形OAD中,OA=2,∠ODA=30°,因此OD=4,t= . 因此t的取值范围是0≤t≤ .
(4)当0≤t≤ 时,S= t 2 ;Smax= ; 当 <t≤ 时,S= - t 2 - ( -t) 2 =- (t- ) 2 + ,Smax= ; 当 <t≤ 时,S=
收起
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
- 个人、企业类侵权投诉
- 违法有害信息,请在下方选择后提交
类别
- 色情低俗
- 涉嫌违法犯罪
- 时政信息不实
- 垃圾广告
- 低质灌水
我们会通过消息、邮箱等方式尽快将举报结果通知您。
说明
我的现金
0
提现
下载百度知道APP 在APP端-任务中心提现
我知道了
| |