如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.(Ⅰ) 求证:平面BCE
如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.(Ⅰ)求证:平面BCE⊥平面CDE;(Ⅱ)求二面角B-EF-D的余...
如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.(Ⅰ) 求证:平面BCE⊥平面CDE;(Ⅱ) 求二面角B-EF-D的余弦值.
展开
3个回答
展开全部
展开全部
解:(1)取CE中点P,连结FP、BP
DE⊥平面ACD,AB⊥平面ACD => AB//DE
根据三角形中位线定理,FP//=1/2DE,AB//=1/2DE => AB//=FP => AF//BP
因此AF//平面BCE.
(2)AB⊥平面ACD,DE//AB => DE⊥平面ACD => DE⊥AF
而AF⊥CD,于是AF⊥平面CDE.
于是由BP//AF,有BP⊥平面CDE,
因此,平面BCE⊥平面CDE.
DE⊥平面ACD,AB⊥平面ACD => AB//DE
根据三角形中位线定理,FP//=1/2DE,AB//=1/2DE => AB//=FP => AF//BP
因此AF//平面BCE.
(2)AB⊥平面ACD,DE//AB => DE⊥平面ACD => DE⊥AF
而AF⊥CD,于是AF⊥平面CDE.
于是由BP//AF,有BP⊥平面CDE,
因此,平面BCE⊥平面CDE.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
无图无真相
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询