已知AB∥CD,线段EF分别与AB、CD相交于点E、F.(1)如图①,当∠A=25°,∠APC=70°时,求∠C的度数;(

已知AB∥CD,线段EF分别与AB、CD相交于点E、F.(1)如图①,当∠A=25°,∠APC=70°时,求∠C的度数;(2)如图②,当点P在线段EF上运动时(不包括E、... 已知AB∥CD,线段EF分别与AB、CD相交于点E、F.(1)如图①,当∠A=25°,∠APC=70°时,求∠C的度数;(2)如图②,当点P在线段EF上运动时(不包括E、F两点),∠A、∠APC与∠C之间有什么确定的相等关系?试证明你的结论;(3)如图③,当点P在线段FE的延长线上运动时,(2)中的结论还成立吗?如果成立,说明理由;如果不成立,试探究它们之间新的相等关系并证明. 展开
 我来答
Kyoya18MY1
2014-09-11 · 超过68用户采纳过TA的回答
知道答主
回答量:113
采纳率:0%
帮助的人:64.7万
展开全部
解:(1)过点P作PQ∥AB,
∴∠APQ=∠A=25°.
∴∠QPC=∠APC-∠APQ=45°.
∵AB∥CD,PQ∥AB,
∴CD∥PQ.
∴∠C=∠QPC=45°.

(2)∠C=∠APC-∠A.
证明如下:过点P作PQ∥AB.
∴∠APQ=∠A.
∴∠QPC=∠APC-∠APQ=∠APC-∠A.
∵AB∥CD,PQ∥AB,
∴CD∥PQ.
∴∠C=∠QPC.
∴∠C=∠APC-∠A.

(3)不成立,新的相等关系为∠C=∠APC+∠A.
证明:设AB与CP相交于Q,则∠PQB=∠APC+∠A.
∵AB∥CD,
∴∠C=∠PQB,
∴∠C=∠APC+∠A.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式