如图,△ABC为任意三角形,以AB、AC为边分别向外做等边△ABD和等边△ACE,连接CD、BE并相交于点P.求证:
如图,△ABC为任意三角形,以AB、AC为边分别向外做等边△ABD和等边△ACE,连接CD、BE并相交于点P.求证:(1)CD=BE;(2)∠BPC=120°....
如图,△ABC为任意三角形,以AB、AC为边分别向外做等边△ABD和等边△ACE,连接CD、BE并相交于点P.求证:(1)CD=BE;(2)∠BPC=120°.
展开
1个回答
展开全部
证明:(1)∵以AB、AC为边分别向外做等边△ABD和等边△AC,
∴AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,
∴∠DAB+∠BAC=∠EAC+∠BAC,
∴∠DAC=∠BAE,
在△DAC和△BAE中,
,
∴△DAC≌△BAE(SAS),
∴CD=BE;
(2)∵△DAC≌△BAE,
∴∠BEA=∠ACD,
∴∠BPC=∠ECP+∠PEC
=∠DCA+∠ACE+∠PEC
=∠BEA+∠ACE+∠PEC
=∠ACE+∠AEC
=60°+60°
=120°.
∴AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,
∴∠DAB+∠BAC=∠EAC+∠BAC,
∴∠DAC=∠BAE,
在△DAC和△BAE中,
|
∴△DAC≌△BAE(SAS),
∴CD=BE;
(2)∵△DAC≌△BAE,
∴∠BEA=∠ACD,
∴∠BPC=∠ECP+∠PEC
=∠DCA+∠ACE+∠PEC
=∠BEA+∠ACE+∠PEC
=∠ACE+∠AEC
=60°+60°
=120°.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询