用数学归纳法证明1^2/1·3+2^2/3·5+...+n^2/(2n-1)(2n+1)=n(n+1)/2(2n+1)
用数学归纳法证明1^2/1·3+2^2/3·5+...+n^2/(2n-1)(2n+1)=n(n+1)/2(2n+1)n属于N+...
用数学归纳法证明1^2/1·3+2^2/3·5+...+n^2/(2n-1)(2n+1)=n(n+1)/2(2n+1) n属于N+
展开
2个回答
2011-05-08
展开全部
(1) n = 1 时 左边 = 1/3, 右边 = 2/6 = 1/3, 右边 = 左边
(2)设 n = k (>1)时, 左边 = k(k+1) / [2(2k+1)]
当 n = k+1 时, 左边 = k(k+1) / [2(2k+1)] + (k+1)^2 / (2k+1)(2k+3)
= (k+1)*(2k+1)*(k+2) / 2(2k+1)(2k+3) = (k+1)(k+3) / 2(2k+3)
得证
(2)设 n = k (>1)时, 左边 = k(k+1) / [2(2k+1)]
当 n = k+1 时, 左边 = k(k+1) / [2(2k+1)] + (k+1)^2 / (2k+1)(2k+3)
= (k+1)*(2k+1)*(k+2) / 2(2k+1)(2k+3) = (k+1)(k+3) / 2(2k+3)
得证
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询