如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3, ),点C的坐标为( ,

如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一动点,则PA+PC的最小值为().A.B... 如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3, ),点C的坐标为( ,0),点P为斜边OB上的一动点,则PA+PC的最小值为( ). A. B. C. D.2 展开
 我来答
莫奈00443
推荐于2020-01-19 · TA获得超过155个赞
知道答主
回答量:131
采纳率:0%
帮助的人:71.9万
展开全部
B.


试题分析:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,求出AM,求出AD,求出DN、CN,根据勾股定理求出CD,即可得出答案:
作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小.
∵DP=PA,∴PA+PC=PD+PC=CD.
∵B(3, ),∴AB= ,OA=3,∠B=60°.
由勾股定理得:OB=2 .
由三角形面积公式得: ×OA×AB= ×OB×AM,∴AM= .∴AD=2× =3.
∵∠AMB=90°,∠B=60°,∴∠BAM=30°.
∵∠BAO=90°,∴∠OAM=60°.
∵DN⊥OA,∴∠NDA=30°.∴AN= AD= .
由勾股定理得:DN= .
∵C( ,0),∴ .
在Rt△DNC中,由勾股定理得: .
∴PA+PC的最小值是 .
故选B.

考点: 1.轴对称(最短路线问题);2.坐标与图形性质;3.勾股定理;4.含30度角直角三角形的性质.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式