求详细解答!谢谢
5个回答
2014-10-24
展开全部
证明:延长CE到F,使EF=CE,连接FB.
∵CE是△ABC的中线,
∴AE=EB,
又∵∠AEC=∠BEF,
∴△AEC≌△BEF,(SAS)
∴∠A=∠EBF,AC=FB.
∵AB=AC,
∴∠ABC=∠ACB,
∴∠CBD=∠A+∠ACB=∠EBF+∠ABC=∠CBF;
∵CB是ADC的中线,
∴AB=BD,
又∵AB=AC,AC=FB,
∴FB=BD,
又CB=CB,
∴△CBF≌△CBD(SAS),
∴CD=CF=CE+EF=2CE
∵CE是△ABC的中线,
∴AE=EB,
又∵∠AEC=∠BEF,
∴△AEC≌△BEF,(SAS)
∴∠A=∠EBF,AC=FB.
∵AB=AC,
∴∠ABC=∠ACB,
∴∠CBD=∠A+∠ACB=∠EBF+∠ABC=∠CBF;
∵CB是ADC的中线,
∴AB=BD,
又∵AB=AC,AC=FB,
∴FB=BD,
又CB=CB,
∴△CBF≌△CBD(SAS),
∴CD=CF=CE+EF=2CE
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询