初中数学2次函数旋转90°问题

在平面直角坐标系中,已知二次函数y=ax²+bx+c,过点A(-1,10)、B(2,1)、C(3,2),交Y轴于D。现将二次函数y=ax²+bx+c逆... 在平面直角坐标系中,已知二次函数y=ax²+bx+c,过点A(-1,10)、B(2,1)、C(3,2),交Y轴于D。现将二次函数y=ax²+bx+c逆时针旋转90°,交X轴于E,求三角形BDE的面积.
这道题是我在竞赛卷上看到的,各位大虾帮我解一下,说说 思路,还有 旋转之后那个函数可以用解析式表示吗?
失误,以B为中心旋转
怎么答案都不一样?哪个才是对的?
展开
dh5505
2011-05-12 · TA获得超过7.3万个赞
知道大有可为答主
回答量:2.9万
采纳率:79%
帮助的人:9355万
展开全部
将A(-1,10)、B(2,1)、C(3,2),代入y=ax²+bx+c,得
a-b+c=10
4a+2b+c=1
9a+3b+c=1
解得 a=1,b=-4,c=5
所以y=a²-4x+5,
y=(a-2)²+1
顶点坐标为(2,1)即点B是顶点。
旋转后与x轴交点E的坐标为E(1,0)
过点B向x轴作垂线,垂足为M,则M(2,0)
SΔBDE=S四边形BMOD-SΔBME-SΔEOD
=(5+1)·2÷2- 1·1÷2-5·1÷2
=6-1/2-5/2=3
另:旋转后图像的解析式不再叫“函数”,但仍可以用解析式表示,但这已不是初中阶段的知识。本题的原意也不要求旋转后图像的解析式。
刘傻妮子
高粉答主

2011-05-08 · 醉心答题,欢迎关注
知道大有可为答主
回答量:5.2万
采纳率:85%
帮助的人:7501万
展开全部
这道题没有说明白。旋转,是要有“旋转中心”的。是以O为中心,还是以这个抛物线的顶点为中心?第二,旋转之后,新图像的解析式不叫“函数”,应该叫“二元二次方程”。所谓函数,中学里指的是:对于一个自变量x的每一个确定的值(当然x要在函数的定义域里取值),所对应的y的值是唯一的,也就是我们所研究的单值函数。这道题不要再研究了,好吗?
追问
那麻烦给这道题解下好吧
给个详细过程 ,就是直接抄到卷子上给对的过程
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
s杀神一刀斩
2011-05-08
知道答主
回答量:5
采纳率:0%
帮助的人:6716
展开全部
思路:主要是找出B,D,E这三个点,由题好求D(0,-5)点,关键要求E点。旋转后开口是向左的一个抛物线,顶点为(12,1)。方程为(Y-1)*(Y-1)=-X-12,他与X轴相交为D点(11,0)所以三角形BDE的面积=1/2*(1+5)*(11-5/3)=28。<(5/3,0)为直线BD与x轴的交点>

参考资料: 自创

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
施世繁
2011-05-14 · TA获得超过393个赞
知道答主
回答量:130
采纳率:0%
帮助的人:46.2万
展开全部
回答者: WANGYQ217124 | 四级 | 2011-5-9 15:40 | 检举

将A(-1,10)、B(2,1)、C(3,2),代入y=ax²+bx+c,得
a-b+c=10
4a+2b+c=1
9a+3b+c=1
解得 a=1,b=-4,c=5
所以y=a²-4x+5,
y=(a-2)²+1
顶点坐标为(2,1)即点B是顶点。
旋转后与x轴交点E的坐标为E(1,0)
过点B向x轴作垂线,垂足为M,则M(2,0)
SΔBDE=S四边形BMOD-SΔBME-SΔEOD
=(5+1)·2÷2- 1·1÷2-5·1÷2
=6-1/2-5/2=3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-05-16
展开全部
1,先说明y=ax²+bx+c逆时针旋转90°后,所得方程的一般形式为;x=ay²+by+c(其中c为与x轴交点的坐标)(和2010年海淀的一摸题差不多)
2.解题的主要步骤如下:
.(1)旋转后A,C的对应点坐标为A'(-7,-2),C'(1,2)
(2)把A,B,C坐标代人y=ax²+bx+c得出c=5,即D(0,5)
(3)把A'(-7,-2),C'(1,2),B(2,1)代人x=ay²+by+c得出c=3/4,即E(1,0)
(4)三角形BDE的面积=(1+5)×2×(1/2)-5×1×(1/2)-1×1×(1/2)=3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式