如图,矩形纸片ABCD中,AB=10cm,BC=8cm,E为BC上一点,将纸片沿AE翻折,使点E与CD边上的点F重合.(1)

如图,矩形纸片ABCD中,AB=10cm,BC=8cm,E为BC上一点,将纸片沿AE翻折,使点E与CD边上的点F重合.(1)求线段EF的长;(2)若线段AF上有动点P(不... 如图,矩形纸片ABCD中,AB=10cm,BC=8cm,E为BC上一点,将纸片沿AE翻折,使点E与CD边上的点F重合.(1)求线段EF的长;(2)若线段AF上有动点P(不与A、F重合),如图(2),点P自点A沿AF方向向点F运动,过点P作PM∥EF,PM交AE于M,连接MF,设AP=x(cm),△PMF的面积为y(cm)2,求y与x的函数关系式;(3)在题(2)的条件下,△FME能否是等腰三角形?若能,求出AP的值,若不能,请说明理由. 展开
 我来答
元超麝
推荐于2016-12-01 · TA获得超过140个赞
知道答主
回答量:113
采纳率:0%
帮助的人:140万
展开全部
(1)根据折叠的性质知:∠ABE=∠AFE=90°,AB=AF=10cm,EF=BE;
Rt△ADF中,AF=10cm,AD=8cm;由勾股定理得:DF=6cm;
∴CF=CD-DF=10-6=4cm;
在Rt△CEF中,CE=BC-BE=BC-EF=8-EF,由勾股定理得:
EF2=CF2+CE2,即EF2=42+(8-EF)2,解得EF=5cm;

(2)∵PM∥EF,
∴PM⊥AF,△APM∽△AFE;
PM
EF
AP
AF
,即
PM
5
x
10
,PM=
x
2

在Rt△PMF中,PM=
x
2
,PF=10-x;
则S△PMF=
1
2
(10-x)?
x
2
=-
1
4
x2+
5
2
x;(0<x<10)

(3)在Rt△PMF中,由勾股定理,得:
MF=
PM2+FP2
=
5
4
x2?20x+100

同理可求得AE=
AB2+BE2
=5
5
,AM=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消