如图,矩形纸片ABCD中,AB=10cm,BC=8cm,E为BC上一点,将纸片沿AE翻折,使点E与CD边上的点F重合.(1)
如图,矩形纸片ABCD中,AB=10cm,BC=8cm,E为BC上一点,将纸片沿AE翻折,使点E与CD边上的点F重合.(1)求线段EF的长;(2)若线段AF上有动点P(不...
如图,矩形纸片ABCD中,AB=10cm,BC=8cm,E为BC上一点,将纸片沿AE翻折,使点E与CD边上的点F重合.(1)求线段EF的长;(2)若线段AF上有动点P(不与A、F重合),如图(2),点P自点A沿AF方向向点F运动,过点P作PM∥EF,PM交AE于M,连接MF,设AP=x(cm),△PMF的面积为y(cm)2,求y与x的函数关系式;(3)在题(2)的条件下,△FME能否是等腰三角形?若能,求出AP的值,若不能,请说明理由.
展开
1个回答
展开全部
(1)根据折叠的性质知:∠ABE=∠AFE=90°,AB=AF=10cm,EF=BE;
Rt△ADF中,AF=10cm,AD=8cm;由勾股定理得:DF=6cm;
∴CF=CD-DF=10-6=4cm;
在Rt△CEF中,CE=BC-BE=BC-EF=8-EF,由勾股定理得:
EF2=CF2+CE2,即EF2=42+(8-EF)2,解得EF=5cm;
(2)∵PM∥EF,
∴PM⊥AF,△APM∽△AFE;
∴
=
,即
=
,PM=
;
在Rt△PMF中,PM=
,PF=10-x;
则S△PMF=
(10-x)?
=-
x2+
x;(0<x<10)
(3)在Rt△PMF中,由勾股定理,得:
MF=
=
;
同理可求得AE=
=5
,AM=
Rt△ADF中,AF=10cm,AD=8cm;由勾股定理得:DF=6cm;
∴CF=CD-DF=10-6=4cm;
在Rt△CEF中,CE=BC-BE=BC-EF=8-EF,由勾股定理得:
EF2=CF2+CE2,即EF2=42+(8-EF)2,解得EF=5cm;
(2)∵PM∥EF,
∴PM⊥AF,△APM∽△AFE;
∴
PM |
EF |
AP |
AF |
PM |
5 |
x |
10 |
x |
2 |
在Rt△PMF中,PM=
x |
2 |
则S△PMF=
1 |
2 |
x |
2 |
1 |
4 |
5 |
2 |
(3)在Rt△PMF中,由勾股定理,得:
MF=
PM2+FP2 |
|
同理可求得AE=
AB2+BE2 |
5 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|