已知二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0)满足条件:对任意实数x都有f(x)≥2x;且当0<x<2时
已知二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0)满足条件:对任意实数x都有f(x)≥2x;且当0<x<2时,总有f(x)≤12(x+1)2成立.(1)求f...
已知二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0)满足条件:对任意实数x都有f(x)≥2x;且当0<x<2时,总有f(x)≤12(x+1)2成立.(1)求f(1)的值;(2)求f(-1)的取值范围.
展开
1个回答
展开全部
(1)∵对任意实数x都有f(x)≥2x,
∴f(1)≥2.
∵当0<x<2时,总有f(x)≤
(x+1)2成立,
∴f(1)≤
(1+1)2=2,
∴f(1)=2.(3分)
(2)∵f(1)=a+b+c=2,
对任意实数x都有f(x)≥2x,
即ax2+(b-2)x+c≥0恒成立,
∴
,
∴b-2=-(a+c),
∴[-(a+c)]2-4ac≤0,
即(a-c)2≤0,
∴a=c>0,b=2-2a.(5分)
∵f(x)≤
(x+1)2,
∴2f(x)≤(x+1)2,
即2[ax2+(2-2a)x+a]≤(x+1)2,
整理得 (2a-1)x2+(2-4a)x+2a-1≤0,
即(2a-1)(x-1)2≤0,
∵当0<x<2时,它恒成立,
∴0<a≤
.
∴f(-1)=a-b+c=4a-2的取值范围是(-2,0].(10分)
∴f(1)≥2.
∵当0<x<2时,总有f(x)≤
1 |
2 |
∴f(1)≤
1 |
2 |
∴f(1)=2.(3分)
(2)∵f(1)=a+b+c=2,
对任意实数x都有f(x)≥2x,
即ax2+(b-2)x+c≥0恒成立,
∴
|
∴b-2=-(a+c),
∴[-(a+c)]2-4ac≤0,
即(a-c)2≤0,
∴a=c>0,b=2-2a.(5分)
∵f(x)≤
1 |
2 |
∴2f(x)≤(x+1)2,
即2[ax2+(2-2a)x+a]≤(x+1)2,
整理得 (2a-1)x2+(2-4a)x+2a-1≤0,
即(2a-1)(x-1)2≤0,
∵当0<x<2时,它恒成立,
∴0<a≤
1 |
2 |
∴f(-1)=a-b+c=4a-2的取值范围是(-2,0].(10分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询