如图所示,一光滑的半径为0.1m的半圆形轨道放在水平面上,一个质量为m的小球以某一速度冲上轨道,当小球
如图所示,一光滑的半径为0.1m的半圆形轨道放在水平面上,一个质量为m的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,轨道的压力恰好为零,(1)小球在B点速度是多少?...
如图所示,一光滑的半径为0.1m的半圆形轨道放在水平面上,一个质量为m的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,轨道的压力恰好为零,(1)小球在B点速度是多少?(2)小球落地点离轨道最低点A左侧多远?(3)落地时小球速度为多少?
展开
1个回答
展开全部
(1)小球在B球时,只受重力的作用,
由牛顿第二定律得:mg=m
,
解得,小球在B点的速度:v=
=
=1m/s;
(2)小球离开轨道后做平抛运动,
水平方向:x=vt,
竖直方向:y=2R=
gt2,
解得:t=0.2s,x=0.2m;
(3)小球落地时竖直方向的分速度:
vy=gt=10×0.2=2m/s,
落地速度大小为vC=
=
,m/s;
答:(1)小球在B点速度是1m/s;
(2)小球落地点离轨道最低点A左侧0.2m;
(3)落地时小球速度为
m/s.
由牛顿第二定律得:mg=m
v2 |
R |
解得,小球在B点的速度:v=
gR |
10×0.1 |
(2)小球离开轨道后做平抛运动,
水平方向:x=vt,
竖直方向:y=2R=
1 |
2 |
解得:t=0.2s,x=0.2m;
(3)小球落地时竖直方向的分速度:
vy=gt=10×0.2=2m/s,
落地速度大小为vC=
v2+
|
12+22 |
5 |
答:(1)小球在B点速度是1m/s;
(2)小球落地点离轨道最低点A左侧0.2m;
(3)落地时小球速度为
5 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询