如图,在△ABC中,AB=AC=5cm,BS=8cm,P是BC边上一动点(不与B、C重合),过点P做射线PM交AC于M,
使∠APM=∠B(提示:△ABP∽△PCM)(1)设BP=x,CM=y,求y与x的函数解析式和x的取值范围。(2)当△APM是等腰三角形时,求PB长。...
使∠APM=∠B (提示:△ABP∽△PCM)(1)设BP=x,CM=y,求y与x的函数解析式和x的取值范围。(2)当△APM是等腰三角形时,求PB长。
展开
2个回答
展开全部
证明:(1)
∵AB=AC,∴∠B=∠C,
∵∠APM=∠B,∴∠APM=∠B=∠C,
∵∠CMP=∠PAM+∠APM,∠BPA=∠PAM+∠C,
∴∠BPA=∠CMP,∴△ABP∽△PCM;
解:(2)
∵△ABP∽△PCM
∴AB:PC=PB:CM,即:5:(8-x)=x:y,
y=(8/5)x-(1/5)x²
0<x<8
解:(3)
作AN⊥BC,交BC于N,则BN=1/2BC=4
CosB=4/5
Cos60°=1/2
∴CosB>Cos60°
∴∠B<60°
∵∠APM=∠B
∴∠APM<60°
∴要使△APM为等腰三角形
只能AP=MP
∵△ABP∽△PCM
∴AP:PM=AB:PC,
即:AP:PM=5:PC
∵AP=MP
∴1:1=5:PC
PC=5
PB=8-5=3
这个是对的哦
楼上的 好像有出入哦
希望对你有所帮助 还望采纳~~
∵AB=AC,∴∠B=∠C,
∵∠APM=∠B,∴∠APM=∠B=∠C,
∵∠CMP=∠PAM+∠APM,∠BPA=∠PAM+∠C,
∴∠BPA=∠CMP,∴△ABP∽△PCM;
解:(2)
∵△ABP∽△PCM
∴AB:PC=PB:CM,即:5:(8-x)=x:y,
y=(8/5)x-(1/5)x²
0<x<8
解:(3)
作AN⊥BC,交BC于N,则BN=1/2BC=4
CosB=4/5
Cos60°=1/2
∴CosB>Cos60°
∴∠B<60°
∵∠APM=∠B
∴∠APM<60°
∴要使△APM为等腰三角形
只能AP=MP
∵△ABP∽△PCM
∴AP:PM=AB:PC,
即:AP:PM=5:PC
∵AP=MP
∴1:1=5:PC
PC=5
PB=8-5=3
这个是对的哦
楼上的 好像有出入哦
希望对你有所帮助 还望采纳~~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询