求完整的解答过程 谢谢
2014-11-03
展开全部
已知函数f(x)=2x/x2+1,证明在[1,正无穷)是减函数.
证明:任取x2>x1>1.
x2-x1>0,
1-x2x1<0.
f(x2)-f(x1)
=[2x2/(x2^2+1)]-[2x1/(x1^2+1)]
={[2x2(x1^2+1)]-2x1(x1^2+1)]}/[(x2^2+1)(x1^2+1)]
=[2(x2-x1)+2x1x2(x1-x2)]/[(x2^2+1)(x1^2+1)]
=[2(x2-x1)(1-x1x2)]/[(x2^2+1)(x1^2+1)].
由x2>x1>1.
得
x2-x1>0,
1-x2x1<0.
而(x2^2+1)(x1^2+1)>0.
得[2(x2-x1)(1-x1x2)]/[(x2^2+1)(x1^2+1)]<0.
即
f(x2)-f(x1)<0.
x2-x1>0,
而
f(x2)-f(x1)<0.
故已知函数f(x)=2x/x2+1在[1,正无穷)是减函数.
证明:任取x2>x1>1.
x2-x1>0,
1-x2x1<0.
f(x2)-f(x1)
=[2x2/(x2^2+1)]-[2x1/(x1^2+1)]
={[2x2(x1^2+1)]-2x1(x1^2+1)]}/[(x2^2+1)(x1^2+1)]
=[2(x2-x1)+2x1x2(x1-x2)]/[(x2^2+1)(x1^2+1)]
=[2(x2-x1)(1-x1x2)]/[(x2^2+1)(x1^2+1)].
由x2>x1>1.
得
x2-x1>0,
1-x2x1<0.
而(x2^2+1)(x1^2+1)>0.
得[2(x2-x1)(1-x1x2)]/[(x2^2+1)(x1^2+1)]<0.
即
f(x2)-f(x1)<0.
x2-x1>0,
而
f(x2)-f(x1)<0.
故已知函数f(x)=2x/x2+1在[1,正无穷)是减函数.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询