如图,在△ABC中,以AC边为直径的⊙O交BC边于点D,在劣弧 上取一点E,并使∠EBC=∠DEC,延长BE依次交

如图,在△ABC中,以AC边为直径的⊙O交BC边于点D,在劣弧上取一点E,并使∠EBC=∠DEC,延长BE依次交AC于G,交⊙O于H小题1:求证:AC⊥BH小题2:若∠A... 如图,在△ABC中,以AC边为直径的⊙O交BC边于点D,在劣弧 上取一点E,并使∠EBC=∠DEC,延长BE依次交AC于G,交⊙O于H小题1:求证:AC⊥BH小题2:若∠ABC=45°,⊙O的直径等于10,BD=8,求CE的长 展开
 我来答
山治RRpv5
2015-01-27 · 超过57用户采纳过TA的回答
知道答主
回答量:100
采纳率:0%
帮助的人:104万
展开全部

小题1:连接AD,………………………………………1分
∵∠DAC=∠DEC,∠EBC=∠DEC,
∴∠DAC=∠EBC,…………………………………2分
又∵AC是⊙O的直径,∴∠ADC=90°,………3分
∴∠EBC+∠BCG=∠DAC+∠DCA=90°,
        
∴∠BGC=90°,∴AC⊥BH.……………………5分
小题2:∵∠BDA=180°-∠ADC=90°,∠ABC=45°,
∴∠BAD=45°,∴AD=BD=8,……………………6分
又∵AC=10,∴在Rt△ADC中由勾股定理,得:

∴BC=BD+DC=8+6=14,……………………………7分
又∵∠BGC=∠ADC=90°,∠BCG=∠ACD,
∴△BCG∽△ACD,
,∴ ,………8分
连接AE,∵AC是⊙O的直径,∴∠AEC=90°,
∴Rt△AEC∽Rt△EGC,∴ ,∴
.……………………………………10分

 (1)利用园的直径对应的园周角为直角,再根据角的等量代换得出∠BGC=90°,从而得出AC⊥BH;
(2)先用勾股定理求出BC的长,然后利用△BCG∽△ACD求出CG的长,再利用Rt△AEC∽Rt△EGC求出CE的长。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式