如图1,在平面直角坐标系中,抛物线C1:y=ax2-a2(a>0)经过点B(1,0),顶点为A(1)求抛物线C1的解析
如图1,在平面直角坐标系中,抛物线C1:y=ax2-a2(a>0)经过点B(1,0),顶点为A(1)求抛物线C1的解析式;(2)如图2,先将抛物线C1向上平移使其顶点在原...
如图1,在平面直角坐标系中,抛物线C1:y=ax2-a2(a>0)经过点B(1,0),顶点为A(1)求抛物线C1的解析式;(2)如图2,先将抛物线 C1向上平移使其顶点在原点O,再将其顶点沿直线y=x平移得到抛物线C2,设抛物线C2与直线y=x交于C、D两点,求线段CD的长;(3)在图1中将抛物线C1绕点B旋转180°后得到抛物线C3,直线y=kx-2k+4总经过一定点M,若过定点M的直线l与抛物线C3只有一个公共点,求直线l的解析式.
展开
1个回答
展开全部
(1)把点B(1,0)代入y=ax2-a2,得0=a-a2,解得a=0,或1,
∵a>0,
∴a=1,
∴y=x2-1.
(2)设抛物线C2的顶点为(m,m),依题意抛物线C2的解析式为:y=(x-m)2+m,
与直线y=x联立
,
解方程组得:
,
,
∴C(m,m),D(m+1,m+1)
过点C作CM∥x轴,过点D作DM∥y轴,
∴CM=1,DM=1,
∴CD=
.
(3)依题意可求出抛物线C3的解析式为:y=-(x-2)2+1,
∵直线y=kx-2k+4总经过一定点M,
∴定点M为(2,4),
①经过定点M(2,4),与y轴平行的直线l:x=2与抛物线C3总有一个公共点(2,1).
②经过定点M(2,4)的直线l为一次函数y=kx-2k+4时,与y=-(x-2)2+1联立方程组,消去y得x2-4x+3+kx-2k+4=0,
即x2-(4-k)x+7-2k=0,△=k2-12=0,得k1=2
,k2=-2
,
∴y=2
x+4-4
或y=-2
x+4+4
,
综上所述,过定点M,共有三条直线l:x=2 或y=2
x+4-4
或y=-2
x+4+4
,它们分别与抛物线C3只有一个公共点.
∵a>0,
∴a=1,
∴y=x2-1.
(2)设抛物线C2的顶点为(m,m),依题意抛物线C2的解析式为:y=(x-m)2+m,
与直线y=x联立
|
解方程组得:
|
|
∴C(m,m),D(m+1,m+1)
过点C作CM∥x轴,过点D作DM∥y轴,
∴CM=1,DM=1,
∴CD=
2 |
(3)依题意可求出抛物线C3的解析式为:y=-(x-2)2+1,
∵直线y=kx-2k+4总经过一定点M,
∴定点M为(2,4),
①经过定点M(2,4),与y轴平行的直线l:x=2与抛物线C3总有一个公共点(2,1).
②经过定点M(2,4)的直线l为一次函数y=kx-2k+4时,与y=-(x-2)2+1联立方程组,消去y得x2-4x+3+kx-2k+4=0,
即x2-(4-k)x+7-2k=0,△=k2-12=0,得k1=2
3 |
3 |
∴y=2
3 |
3 |
3 |
3 |
综上所述,过定点M,共有三条直线l:x=2 或y=2
3 |
3 |
3 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询