已知函数f(x)=-x2+2ex+m-1,g(x)=x+e2x (x>0).(1)若g(x)=m有实根,求m的取值范围;(2)确定
已知函数f(x)=-x2+2ex+m-1,g(x)=x+e2x(x>0).(1)若g(x)=m有实根,求m的取值范围;(2)确定m的取值范围,使得g(x)-f(x)=0有...
已知函数f(x)=-x2+2ex+m-1,g(x)=x+e2x (x>0).(1)若g(x)=m有实根,求m的取值范围;(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.
展开
展开全部
(1)方法一:∵g(x)=x+
≥2e,等号成立的条件是x=e.
故g(x)的值域是[2e,+∞),
因而只需m≥2e,则g(x)=m就有实根.
故m的取值范围是{m|m≥2e}.
方法二:作出g(x)=x+
(x>0)的图象如图:
观察图象,知:若使g(x)=m有实根,则只需m≥2e,故m的取值范围是{m|m≥2e}.
方法三:解方程由g(x)=m,得x2-mx+e2=0,此方程有大于零的根,
故
,等价于
,故m≥2e.
故m的取值范围是{m|m≥2e}.
(2)若g(x)-f(x)=0有两个相异的实根,即g(x)=f(x)中,函数g(x)与f(x)的图象有两个不同的交点,作出g(x)=x+
(x>0)的图象,
∵f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2,
其对称轴为x=e,开口向下,最大值为m-1+e2,
故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)的图象有两个不同的交点,即g(x)-f(x)=0有两个相异的实根,∴m的取值范围是:(-e2+2e+1,+∞).
e2 |
x |
故g(x)的值域是[2e,+∞),
因而只需m≥2e,则g(x)=m就有实根.
故m的取值范围是{m|m≥2e}.
方法二:作出g(x)=x+
e2 |
x |
观察图象,知:若使g(x)=m有实根,则只需m≥2e,故m的取值范围是{m|m≥2e}.
方法三:解方程由g(x)=m,得x2-mx+e2=0,此方程有大于零的根,
故
|
|
故m的取值范围是{m|m≥2e}.
(2)若g(x)-f(x)=0有两个相异的实根,即g(x)=f(x)中,函数g(x)与f(x)的图象有两个不同的交点,作出g(x)=x+
e2 |
x |
∵f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2,
其对称轴为x=e,开口向下,最大值为m-1+e2,
故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)的图象有两个不同的交点,即g(x)-f(x)=0有两个相异的实根,∴m的取值范围是:(-e2+2e+1,+∞).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询