
已知函数f(x)的定义域为R,且f(-1)=2,若对任意x∈R函数f(x)的导数f′(x)>2都成立,则f(x)>2
已知函数f(x)的定义域为R,且f(-1)=2,若对任意x∈R函数f(x)的导数f′(x)>2都成立,则f(x)>2x+4的解集为()A.(-∞,-1)B.(-∞,2)C...
已知函数f(x)的定义域为R,且f(-1)=2,若对任意x∈R函数f(x)的导数f′(x)>2都成立,则f(x)>2x+4的解集为( )A.(-∞,-1)B.(-∞,2)C.(2,+∞)D.(-1,+∞)
展开
1个回答
展开全部
设F(x)=f(x)-(2x+4),
则F(-1)=f(-1)-(-2+4)=2-2=0,
又对任意x∈R,f′(x)>2,所以F′(x)=f′(x)-2>0,
即F(x)在R上单调递增,
则F(x)>0的解集为(-1,+∞),
即f(x)>2x+4的解集为(-1,+∞).
故选:D
则F(-1)=f(-1)-(-2+4)=2-2=0,
又对任意x∈R,f′(x)>2,所以F′(x)=f′(x)-2>0,
即F(x)在R上单调递增,
则F(x)>0的解集为(-1,+∞),
即f(x)>2x+4的解集为(-1,+∞).
故选:D
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询