什么是全微分方程?

天丅无双
2011-05-09 · TA获得超过1472个赞
知道小有建树答主
回答量:253
采纳率:0%
帮助的人:144万
展开全部
简介
全微分方程是常微分方程的一种,它在物理学和工程学中广泛使用。

编辑本段定义
给定R2的一个单连通的开子集D和两个在D内连续的函数I和J,那么以下形式的一阶常微分方程:

称为全微分方程,如果存在一个连续可微的函数F,称为势函数,使得:

“全微分方程”的命名指的是函数的全导数。对于函数F(x0,x1,...,xn − 1,xn),全导数为:

编辑本段势函数
在物理学的应用中,I和J通常不仅是连续的,也是连续可微的。施瓦茨定理(也称为克莱罗定理)提供了势函数存在的一个必要条件。对于定义在单连通集合上的微分方程,这个条件也是充分的,我们便得出以下的定理:

给定以下形式的微分方程:

其中I和J在R2的单连通开子集D上是连续可微的,那么势函数F存在,当且仅当下式成立:

编辑本段解
给定一个定义在R2的单连通开子集D上的全微分方程,其势函数为F,那么D内的可微函数f是微分方程的解,当且仅当存在实数c,使得:

对于初值问题:

我们可以用以下公式来寻找一个势函数:

解方程:

其中c是实数,我们便可以构造出所有的解。

参考资料:Boyce, W. E. and DiPrima, R. C. Elementary Differential Equations and Boundary Value Problems, 4th ed. New York: Wiley, 1986.

Ross, C. C. §3.3 in Differential Equations. New York: Springer-Verlag, 2004.

Zwillinger, D. Ch. 62 in Handbook of Differential Equations. San Diego, CA: Academic Press, 1997.
知识宝库第一步
推荐于2016-12-01 · TA获得超过1956个赞
知道大有可为答主
回答量:2798
采纳率:13%
帮助的人:1660万
展开全部
若P(x,y)dx+Q(x,y)dy=du(x,y),则称Pdx+Qdy=0为全微分方程,显然,这时该方程通解为u(x,y)=C(C是任意常数).

方程中的未知数含有微分的情况,只要有dx 对于未知数x 这就是个全微分方程
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-05-09
展开全部
若P(x,y)dx+Q(x,y)dy=du(x,y),则称Pdx+Qdy=0为全微分方程,显然,这时该方程通解为u(x,y)=C(C是任意常数).   根据二元函数的全微分求积定理:设开区域G是一单连通域,函数P(x,y),Q(x,y)在G内具有一阶连续偏导数,则P(x,y)dx+Q(x,y)dy在G内为某一函数u(x,y)的全微分的充要条件是P'(y)=Q'(x),在G内恒成立.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式