设a,b,c都是正数且a b c=1,求证(a 1/a)²+(b+1/b)²+(c+1/c)²≧
设a,b,c都是正数且abc=1,求证(a1/a)²+(b+1/b)²+(c+1/c)²≧100/3...
设a,b,c都是正数且a b c=1,求证(a 1/a)²+(b+1/b)²+(c+1/c)²≧100/3
展开
1个回答
展开全部
证法一:
若正数a、b、c满足a+b+c=1,
则构造下凸函数f(x)=(x+1/x)²,则
依Jensen不等式得
f(a)+f(b)+f(c)≥3f[(a+b+c)/3]=3f(1/3)
→(a+1/a)²+(b+1/b)²+(c+1/c)²
≥3[(a+b+c)/3+3/(a+b+c)]²
=3×(3+1/3)²
=100/3
故原不等式得证.
证法二:
若正数a、b、c满足a+b+c=1,
则依Cauchy不等式得
(a+1/a)²+(b+1/b)²+(c+1/c)²
≥[(a+1/a)+(b+1/b)+(c+1/c)]²/3
=[(a+b+c)+(1/a+1/b+1/c)]²/3
=[(a+b+c)+(a+b+c)(1/a+1/b+1/c)]²/3
≥[1+(1+1+1)²]²/3
=100/3.
故原不等式得证。
若正数a、b、c满足a+b+c=1,
则构造下凸函数f(x)=(x+1/x)²,则
依Jensen不等式得
f(a)+f(b)+f(c)≥3f[(a+b+c)/3]=3f(1/3)
→(a+1/a)²+(b+1/b)²+(c+1/c)²
≥3[(a+b+c)/3+3/(a+b+c)]²
=3×(3+1/3)²
=100/3
故原不等式得证.
证法二:
若正数a、b、c满足a+b+c=1,
则依Cauchy不等式得
(a+1/a)²+(b+1/b)²+(c+1/c)²
≥[(a+1/a)+(b+1/b)+(c+1/c)]²/3
=[(a+b+c)+(1/a+1/b+1/c)]²/3
=[(a+b+c)+(a+b+c)(1/a+1/b+1/c)]²/3
≥[1+(1+1+1)²]²/3
=100/3.
故原不等式得证。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询