从盛满二十升的容器里倒出一升,然后用水填满,在到处一声混合溶液后又用水填满,这样继续进行,如果到第k
从盛满二十升的容器里倒出一升,然后用水填满,在到处一声混合溶液后又用水填满,这样继续进行,如果到第k次(k大于等于一)是共倒出纯酒精x升,设到第k+1共倒出酒精f(x)升...
从盛满二十升的容器里倒出一升,然后用水填满,在到处一声混合溶液后又用水填满,这样继续进行,如果到第k次(k大于等于一)是共倒出纯酒精x升,设到第k+1共倒出酒精f(x)升,求f(x)的解析式
展开
2011-05-11
展开全部
20-1+1-1+1-x=k=1
2011-05-09
展开全部
递推法:
k=1,f1 = 1
k=2,f2 = (20-f1)/20 = 1-f1/20 = 19/20
k=3,f3 = (20-f1-f2)/20 = 1-f1/20-f2/20 = 19/20 - 19/400 = (19/20)^2
k=n,fn = (20-f1-f2-...-f(n-1))/20 = 1-f1/20-f2/20-...-f(n-1)/20 = (19/20)^(n-1)
到第k次共倒出x升,即∑(1~k) fn = 20*k-(k-1)*f1-...-1*f(k-1) = x ...①
到第k+1次共倒出f(x)升,即∑(1~k+1) fn = 20*(k+1)-k*f1-...-1*f(k) = f(x) ...②
② - ①得到 f(k+1) = f(x)-x = (19/20)^k
f(x) = (19/20)^k+x
k=1,f1 = 1
k=2,f2 = (20-f1)/20 = 1-f1/20 = 19/20
k=3,f3 = (20-f1-f2)/20 = 1-f1/20-f2/20 = 19/20 - 19/400 = (19/20)^2
k=n,fn = (20-f1-f2-...-f(n-1))/20 = 1-f1/20-f2/20-...-f(n-1)/20 = (19/20)^(n-1)
到第k次共倒出x升,即∑(1~k) fn = 20*k-(k-1)*f1-...-1*f(k-1) = x ...①
到第k+1次共倒出f(x)升,即∑(1~k+1) fn = 20*(k+1)-k*f1-...-1*f(k) = f(x) ...②
② - ①得到 f(k+1) = f(x)-x = (19/20)^k
f(x) = (19/20)^k+x
追问
答案最后等于(19/20)x+1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询