图中1/(1-x)^2怎么展开为幂级数的??
解:1/(1-x)²=【1/(1-x)】
=(∞∑n²·xⁿ)
=∞∑n1·nx^n-1
例如:求x/(1-x^2)展开为x的幂级数
f(x)=x/(1-x^2)
=x/(1-x)(1+x)
=(1/2)*[1/(1-x)
1/(1+x)]
因为1/(1-x)=∑(n=0,∞)
x^n,x∈(-1,1)
1/(1+x)=∑(n=0,∞)
(-x)^n,x∈(-1,1)
所以
f(x)=(1/2)*∑(n=0,∞)
[1-(-1)^n]
x^n,x∈(-1,1)
或
f(x)=x+x^3+x^5+……=∑(n=0,∞)
x^(2n+1),x∈(-1,1)
x/(1-x^2)=lim(n→∞)
x(1-0)/(1-x^2)
=lim(n→∞)
x(1-(x^2)^n)/(1-x^2)
幂级数解法
是求解常微分方程的一种方法,特别是当微分方程的解不能用初等函数或或其积分式表达时,就要寻求其他求解方法,尤其是近似求解方法,幂级数解法就是常用的近似求解方法。用幂级数解法和广义幂级数解法可以解出许多数学物理中重要的常微分方程,例如:贝塞尔方程、勒让德方程。
1/(1-x)²=【1/(1-x)】’
=(∞∑n²·xⁿ)'
=∞∑n1·nx^n-1
其他类似题型参考
1、求x/(1-x^2)展开为x的幂级数
f(x)=x/(1-x^2)
=x/(1-x)(1+x)
=(1/2)*[1/(1-x) - 1/(1+x)]
因为1/(1-x)=∑(n=0,∞) x^n,x∈(-1,1)
1/(1+x)=∑(n=0,∞) (-x)^n,x∈(-1,1)
所以
f(x)=(1/2)*∑(n=0,∞) [1-(-1)^n] x^n,x∈(-1,1)
写得再清楚一点,就是:
f(x)=x+x^3+x^5+……=∑(n=0,∞) x^(2n+1),x∈(-1,1)
其实,如果细心一点观察,就可以发现:
x/(1-x^2)=lim(n→∞) x(1-0)/(1-x^2)
=lim(n→∞) x(1-(x^2)^n)/(1-x^2)
这正是首项为x,公比为x^2的等比级数的收敛函数~~~
因此,直接可推:f(x)=x+x^3+x^5+……=∑(n=0,∞) x^(2n+1),x∈(-1,1)
2、求x/(1+x^2)展开为x的幂级数
f(x)=x/(1+^2)
f(x)/x=1/(1+x^2)
同取积分:
∫(0,x) f(t)/t dt =∫(0,x) 1/(1+t^2) dt
=arctanx
=∑(n=0,∞) (-1)^n * 1/(2n+1) * x^(2n+1)
然后,同对x求导
f(x)/x=[∑(n=0,∞) (-1)^n * 1/(2n+1) * x^(2n+1)]'
=∑(n=0,∞) [(-1)^n * 1/(2n+1) * x^(2n+1)]'
=∑(n=0,∞) (-1)^n * x^(2n)
因此,
f(x)=∑(n=0,∞) (-1)^n * x^(2n+1),x∈(-1,1)