关于高数中凑微分的问题
比如∫(2x+1)²dx,凑微分=1/2∫(2x+1)²d(2x+1)=1/2∫udu那这个题∫lnx/xdx凑微分=∫udu,为什么∫前面不乘以一个...
比如∫(2x+1)²dx,凑微分=1/2∫ (2x+1)² d(2x+1)=1/2∫ udu
那这个题∫ lnx/x dx凑微分=∫ udu,为什么∫前面不乘以一个1/x ? 上面的题都乘了个1/2,
不是说的凑好微分后要考查和dx的关系吗,上面题凑微分是dx的2倍所以乘1/2,下面的是
1/x dx,为什么就不乘呢? 求解答~~ 展开
那这个题∫ lnx/x dx凑微分=∫ udu,为什么∫前面不乘以一个1/x ? 上面的题都乘了个1/2,
不是说的凑好微分后要考查和dx的关系吗,上面题凑微分是dx的2倍所以乘1/2,下面的是
1/x dx,为什么就不乘呢? 求解答~~ 展开
3个回答
展开全部
在积分运算中,经常要使用“凑微分”的手段。其目的是为了便于使用现有的积分公式。而基本
规则是:遵守“恒等变换”的原则。
例如,∫(2x+1)²dx=(1/2)∫ (2x+1)² d(2x+1)=(1/2)∫ u²du 【注意不是(1/2)∫ udu 】
这是因为(1/2)∫ (2x+1)² d(2x+1)=(1/2)∫ (2x+1)² (2dx)=∫(2x+1)²dx,故前面要乘个(1/2),否则两边
就不相等啦!
而∫ (lnx/x )dx=∫ lnxd(lnx),是因为∫ lnxd(lnx)=∫ lnx(dx/x)=∫ (lnx/x )dx的缘故。
运算是否有错很容易检查:再变回去,看和原来的是否一样!若一样,就对了;若不一样,就错了!
规则是:遵守“恒等变换”的原则。
例如,∫(2x+1)²dx=(1/2)∫ (2x+1)² d(2x+1)=(1/2)∫ u²du 【注意不是(1/2)∫ udu 】
这是因为(1/2)∫ (2x+1)² d(2x+1)=(1/2)∫ (2x+1)² (2dx)=∫(2x+1)²dx,故前面要乘个(1/2),否则两边
就不相等啦!
而∫ (lnx/x )dx=∫ lnxd(lnx),是因为∫ lnxd(lnx)=∫ lnx(dx/x)=∫ (lnx/x )dx的缘故。
运算是否有错很容易检查:再变回去,看和原来的是否一样!若一样,就对了;若不一样,就错了!
展开全部
∫(2x+1)²dx
=1/2∫ (2x+1)² d(2x+1) --- 因为d(2x+1)=2dx,所以前面要有个1/2,来和这里出现的2相消
=1/2∫ udu ---这里的u=2x+1
∫ lnx/x dx
=∫ lnx d(lnx) ---因为d(lnx)=1/x dx
=∫ udu ---这里的u=lnx
=1/2∫ (2x+1)² d(2x+1) --- 因为d(2x+1)=2dx,所以前面要有个1/2,来和这里出现的2相消
=1/2∫ udu ---这里的u=2x+1
∫ lnx/x dx
=∫ lnx d(lnx) ---因为d(lnx)=1/x dx
=∫ udu ---这里的u=lnx
追问
d(lnx)=1/x dx 那么,2dx同样是d(2x+1)的微分,2就是2x的导数,为什么要乘一个1/2呢?
追答
其实已经说很清楚了,
因为d(2x+1)=2dx
所以:∫ (2x+1)² d(2x+1)=∫ (2x+1)² *2dx=2∫(2x+1)²dx
由:∫ (2x+1)² d(2x+1)=2∫(2x+1)²dx, 两边除以2,就有:∫(2x+1)²dx=1/2∫(2x+1)² d(2x+1)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
把lnx看成u,lnx的导数不就是1/x吗?凑du需要乘1/x,式子(lnx/x) 里就有1/x了且刚好是lnx的导即u的导,不需要再乘以它(1/x)就可解了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询