对弧长的曲线积分
∫X²yzds,其中曲线为折线ABCD,这里A,B,C,D为(0,0,0)(0,0,2)(1,0,2)(1,3,2)。分析越详细越好,有追分...
∫X²yz ds,其中曲线为折线ABCD,这里A,B,C,D为(0,0,0)(0,0,2)(1,0,2)(1,3,2)。分析越详细越好,有追分
展开
1个回答
展开全部
解:∵ds=√(dx²+dy²+dz²)
∴∫(ABCD)x²yzds=∫(ABCD)x²yz√(dx²+dy²+dz²)
∵从A(0,0,0)到B(0,0,2)时,z从0变到2,x,y值没有变化(x=y=0,dx=dy=0)
∴∫(AB)x²yzds=∫(AB)x²yz√(dx²+dy²+dz²)
=∫(0,2)0²×0×zdz
=0
∵从B(0,0,2)到C(1,0,2)时,x从0变到1,y,z值没有变化(y=0,z=2,dy=dz=0)
∴∫(BC)x²yzds=∫(BC)x²yz√(dx²+dy²+dz²)
=∫(0,1)x²×0×2dx
=0
∵从C(1,0,2)到D(1,3,2)时,y从0变到3,x,z值没有变化(x=1,z=2,dx=dz=0)
∴∫(CD)x²yzds=∫(CD)x²yz√(dx²+dy²+dz²)
=∫(0,3)1²×2×ydy
=(y²)│(0,3)
=9
故原式=∫(ABCD)x²yzds
=∫(AB)x²yzds+=∫(BC)x²yzds+=∫(CD)x²yzds
=0+0+9
=9。
∴∫(ABCD)x²yzds=∫(ABCD)x²yz√(dx²+dy²+dz²)
∵从A(0,0,0)到B(0,0,2)时,z从0变到2,x,y值没有变化(x=y=0,dx=dy=0)
∴∫(AB)x²yzds=∫(AB)x²yz√(dx²+dy²+dz²)
=∫(0,2)0²×0×zdz
=0
∵从B(0,0,2)到C(1,0,2)时,x从0变到1,y,z值没有变化(y=0,z=2,dy=dz=0)
∴∫(BC)x²yzds=∫(BC)x²yz√(dx²+dy²+dz²)
=∫(0,1)x²×0×2dx
=0
∵从C(1,0,2)到D(1,3,2)时,y从0变到3,x,z值没有变化(x=1,z=2,dx=dz=0)
∴∫(CD)x²yzds=∫(CD)x²yz√(dx²+dy²+dz²)
=∫(0,3)1²×2×ydy
=(y²)│(0,3)
=9
故原式=∫(ABCD)x²yzds
=∫(AB)x²yzds+=∫(BC)x²yzds+=∫(CD)x²yzds
=0+0+9
=9。
东莞大凡
2024-11-14 广告
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询