一阶线性微分方程通解公式

关于那个一阶线性微分方程的通解公式,在使用的时候为什么e^(-p(x)dx积分)中指数积出来不加个任意常数c呢?好像加了c结果会不一样啊?知道的快帮帮我吧!谢谢了!... 关于那个一阶线性微分方程的通解公式,在使用的时候为什么e^(-p(x)dx积分)中指数积出来不加个任意常数c呢?好像加了c结果会不一样啊?知道的快帮帮我吧!谢谢了! 展开
教育小百科达人
2019-01-08 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:472万
展开全部

举例说明:(x-2)*dy/dx=y 2*(x-2)^3

解:

∵(x-2)*dy/dx=y 2*(x-2)³ 

(x-2)dy=[y 2*(x-2)³]dx 

(x-2)dy-ydx=2*(x-2)³dx

[(x-2)dy-ydx]/(x-2)²=2*(x-2)dx

d[y/(x-2)]=d[(x-2)²] 

y/(x-2)=(x-2)² C   (C是积分常数)         

y=(x-2)³ C(x-2)      

∴原方程的通解是y=(x-2)³ C(x-2)(C是积分常数)。

扩展资料:

形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。一阶,指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y'的次数为0或1。

对于一阶非齐次线性微分方程

其对应齐次方程:

解为:

令C=u(x),得:

带入原方程得:

对u’(x)积分得u(x)并带入得其通解形式为:

其中C为常数,由函数的初始条件决定。

注意到,上式右端第一项是对应的齐线性方程式(式2)的通解,第二项是非齐线性方程式(式1)的一个特解。由此可知,一阶非齐线性方程的通解等于对应的齐线性方程的通解与非齐线性方程的一个特解之和。

富港检测技术(东莞)有限公司_
2024-04-02 广告
这个是一阶线性微风方程计算公式 向左转向右转 只用写上面一个C就行,直接原因是一阶方程,所以只有一个常数项,根本原因是,如果在计算Q(x)那个的时候也加上一个常数C1的话求解出来的常数会和外面的这个C合并成一个常数,也就是C1+C2可以用一... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
tnndbdd
2011-05-09 · TA获得超过3143个赞
知道小有建树答主
回答量:643
采纳率:100%
帮助的人:327万
展开全部
公式应该是 ∫e^(-p(x))dx ,这个积分是个不定积分,本身就包含了一个常数。
不用再写 ∫e^(-p(x))dx + C 了。
正常情况下,微分方程方程都有边界条件 和/或 初始条件, 当你知道p(x) 的具体形式时,算这个不定积分,应该保留一个常数,而后用边界条件 和/或 初始条件来确定常数的值,得到完全确定的解。
追问
不是啊,p(x)dx积分出来应该是p(x)的原函数加c这没错吧?
追答
哦,我知道了, 是 e^(- ∫p(x)dx )。好久不解微分方程了,公式记不清了。
应该是 p(x)的原函数加c, 但是你把它代入表达式,假定p(x)的原函数是 q(x),这样就是,
e^(- q(x) + C ) = C' e^(- q(x))
指数上的常数相加,就变成了指数外的相乘,
然后用边界条件 和/或 初始条件来确定常数C' 的值。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
洛朗君
2020-01-06 · 超过16用户采纳过TA的回答
知道答主
回答量:125
采纳率:0%
帮助的人:19.4万
展开全部

[高数]变限积分求导易错点

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式