有关第一类曲线积分 的一道题 见图
1个回答
展开全部
以y为自变量,x为函数
y^2=2x,则 x=y^2/2, dx/dy=y,所以
∫L yds = ∫L y sqrt(1+(x')^2) dy = ∫_(0<=y<=-√2) y sqrt(1+y^2) dy
令 y=tan a,y=0,对应 a=0,y= -√2,对应 a= - arctan√2,dy=(sec a)^2 da,则
∫L yds = ∫_(0<=y<=-√2) y sqrt(1+y^2) dy
= ∫_(0<=a<= -arctan√2) (tan a) (sec a) (sec a)^2 da
= ∫_(0<=a<= -arctan√2) (sec a)^2 d(sec a)
= (sec a)^2/2 |_(0<=a<= -arctan√2)
= [1+(tan a)^2] / 2 |_(0<=a<= -arctan√2)
= [1+(-√2)^2] / 2 - [1+0^2] / 2
= 1
y^2=2x,则 x=y^2/2, dx/dy=y,所以
∫L yds = ∫L y sqrt(1+(x')^2) dy = ∫_(0<=y<=-√2) y sqrt(1+y^2) dy
令 y=tan a,y=0,对应 a=0,y= -√2,对应 a= - arctan√2,dy=(sec a)^2 da,则
∫L yds = ∫_(0<=y<=-√2) y sqrt(1+y^2) dy
= ∫_(0<=a<= -arctan√2) (tan a) (sec a) (sec a)^2 da
= ∫_(0<=a<= -arctan√2) (sec a)^2 d(sec a)
= (sec a)^2/2 |_(0<=a<= -arctan√2)
= [1+(tan a)^2] / 2 |_(0<=a<= -arctan√2)
= [1+(-√2)^2] / 2 - [1+0^2] / 2
= 1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询